List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3767869/publications.pdf Version: 2024-02-01

SHENCMING

#	Article	IF	CITATIONS
1	Allenation of Terminal Alkynes with Aldehydes and Ketones. Accounts of Chemical Research, 2019, 52, 1301-1312.	15.6	200
2	Enantio- and Diastereodivergent Construction of 1,3-Nonadjacent Stereocenters Bearing Axial and Central Chirality through Synergistic Pd/Cu Catalysis. Journal of the American Chemical Society, 2021, 143, 12622-12632.	13.7	122
3	Pd-Catalyzed Enantioselective Syntheses of Trisubstituted Allenes via Coupling of Propargylic Benzoates with Organoboronic Acids. Journal of the American Chemical Society, 2020, 142, 9763-9771.	13.7	81
4	Tetrasubstituted allenes via the palladium-catalysed kinetic resolution of propargylic alcohols using a supporting ligand. Nature Catalysis, 2019, 2, 997-1005.	34.4	75
5	Pd-Catalyzed Enantioselective Heck Reaction of Aryl Triflates and Alkynes. Journal of the American Chemical Society, 2019, 141, 19246-19251.	13.7	69
6	Copper-Catalyzed Syntheses of Multiple Functionalizatized Allenes via Three-Component Reaction of Enynes. ACS Catalysis, 2021, 11, 10007-10013.	11.2	63
7	Rhodium(III)-Catalyzed C–H Functionalization in Water for Isoindolin-1-one Synthesis. Organic Letters, 2018, 20, 2831-2834.	4.6	58
8	Catalytic enantioselective construction of axial chirality in 1,3-disubstituted allenes. Nature Communications, 2019, 10, 507.	12.8	58
9	Asymmetric S _N 2′-type C–H functionalization of arenes with propargylic alcohols. Organic Chemistry Frontiers, 2017, 4, 2002-2007.	4.5	42
10	Identifying a cobalt catalyst for highly selective hydrosilylation of allenes. Organic Chemistry Frontiers, 2017, 4, 1829-1832.	4.5	41
11	Iron-Catalyzed Aerobic Oxidation of Alcohols: Lower Cost and Improved Selectivity. Organic Process Research and Development, 2019, 23, 825-835.	2.7	40
12	Copper-catalyzed radical approach to allenyl iodides. Chemical Communications, 2019, 55, 11774-11777.	4.1	37
13	Matched Coupling of Propargylic Carbonates with Cyclopropanols. Organic Letters, 2018, 20, 554-557.	4.6	35
14	Cobaltâ€Catalyzed Regio―and Stereoselective Hydroboration of Allenes. Angewandte Chemie - International Edition, 2020, 59, 6278-6283.	13.8	34
15	Pyrinap ligands for enantioselective syntheses of amines. Nature Communications, 2021, 12, 19.	12.8	33
16	Palladium/H+-cocatalyzed kinetic resolution of tertiary propargylic alcohols. Chemical Communications, 2018, 54, 6064-6067.	4.1	32
17	A ruthenium(<scp>ii</scp>)-catalyzed C–H allenylation-based approach to allenoic acids. Chemical Science, 2019, 10, 6316-6321.	7.4	32
18	Gold-catalyzed stereoselective cycloisomerization of allenoic acids for two types of common natural Î ³ -butyrolactones. Nature Communications, 2018, 9, 1654.	12.8	28

#	Article	IF	CITATIONS
19	Catalytic Asymmetric Axially Chiral Allenyl C–P Bond Formation. Journal of the American Chemical Society, 2022, 144, 12619-12626.	13.7	28
20	PtCl ₄ -catalyzed skeleton rearrangement–cyclization of tertiary indolyl-3-alkynols. Chemical Communications, 2017, 53, 4722-4725.	4.1	27
21	Selectivities in Nickel-Catalyzed Hydrocarboxylation of Enynes with Carbon Dioxide. ACS Catalysis, 2017, 7, 4504-4508.	11.2	25
22	Stereodefined rhodium-catalysed 1,4-H/D delivery for modular syntheses and deuterium integration. Nature Catalysis, 2021, 4, 586-594.	34.4	25
23	Tri(<i>o</i> -tolyl)phosphine for highly efficient Suzuki coupling of propargylic carbonates with boronic acids. Chemical Communications, 2018, 54, 10451-10454.	4.1	24
24	Pd-Catalyzed coupling reaction of cyclobutanols with propargylic carbonates. Organic Chemistry Frontiers, 2019, 6, 1757-1761.	4.5	23
25	A catalytic highly enantioselective allene approach to oxazolines. Chemical Science, 2018, 9, 1964-1969.	7.4	22
26	A Pd-catalyzed ring opening coupling reaction of 2,3-allenylic carbonates with cyclopropanols. Chemical Communications, 2019, 55, 4523-4526.	4.1	22
27	Catalytic enantioselective allene–anhydride approach to β,γ-unsaturated enones bearing an α-all-carbon-quarternary center. Chemical Science, 2020, 11, 9115-9121.	7.4	21
28	Catalytic transient leaving group for atom-economic synthesis of allenes from 2-alkynols. Chemical Communications, 2017, 53, 12430-12433.	4.1	19
29	Catalytic One-Pot Synthesis of Trisubstituted Allenes from Terminal Alkynes and Ketones. Organic Letters, 2017, 19, 5174-5177.	4.6	18
30	Halogen-Substituted Allenyl Ketones through Ring Opening of Nonstrained Cycloalkanols. Organic Letters, 2021, 23, 2533-2537.	4.6	18
31	Copper-catalyzed highly selective approach to 2-boroallylic silanes from allenylsilanes. Organic Chemistry Frontiers, 2017, 4, 1261-1265.	4.5	16
32	Copper catalysis for highly selective aerobic oxidation of alcohols to aldehydes/ketones. Organic Chemistry Frontiers, 2019, 6, 3101-3106.	4.5	16
33	Efficient synthesis of tetrasubstituted 2,3-allenoates and preliminary studies on bioactivities. Organic Chemistry Frontiers, 2019, 6, 304-308.	4.5	16
34	DFT study on the E-stereoselective reductive A3-coupling reaction of terminal alkynes with aldehydes and 3-pyrroline. Organic Chemistry Frontiers, 2020, 7, 2047-2054.	4.5	16
35	A metal-catalyzed new approach for Î \pm -alkynylation of cyclic amines. Chemical Science, 2019, 10, 1796-1801.	7.4	15
36	Stretchable chiral pockets for palladium-catalyzed highly chemo- and enantioselective allenylation. Nature Communications, 2021, 12, 2416.	12.8	14

#	Article	IF	CITATIONS
37	3,4-Alkadienyl ketones via the palladium-catalyzed decarboxylative allenylation of 3-oxocarboxylic acids. Chemical Communications, 2017, 53, 6037-6040.	4.1	13
38	Transition Metal atalyzed Benzannulation towards Naturally Occurring Carbazole Alkaloids. Israel Journal of Chemistry, 2018, 58, 608-621.	2.3	13
39	Rhodium-catalyzed highly diastereoselective intramolecular [4 + 2] cycloaddition of 1,3-disubstituted allene-1,3-dienes. Organic Chemistry Frontiers, 2018, 5, 2680-2684.	4.5	13
40	Stereoselective rhodium-catalyzed 2-C–H 1,3-dienylation of indoles: dual functions of the directing group. Chemical Science, 2021, 12, 11330-11337.	7.4	13
41	Dimethylprolinol Versus Diphenylprolinol in CuBr2-Catalyzed Enantioselective Allenylation of Terminal Alkynols. Synthesis, 2018, 50, 2533-2545.	2.3	12
42	2,3-Allenoic acids <i>via</i> palladium-catalyzed carboxylation of propargylic alcohols. Organic Chemistry Frontiers, 2018, 5, 1900-1904.	4.5	11
43	Enantioselective Allenation of Terminal Alkynes Catalyzed by Copper Halides of Mixed Oxidation States and Its Application to the Total Synthesis of Scorodonin. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
44	Photo and copper dual catalysis for allene syntheses from propargylic derivatives via one-electron process. Nature Communications, 2022, 13, .	12.8	11
45	Efficient trifluoromethylation <i>via</i> the cyclopropanation of allenes and subsequent C–C bond cleavage. Organic Chemistry Frontiers, 2017, 4, 1762-1767.	4.5	10
46	Room Temperature Allenation of Terminal Alkynes with Aldehydes. Angewandte Chemie - International Edition, 2021, 60, 25708-25713.	13.8	10
47	Identification of HSP90 as a direct target of artemisinin for its anti-inflammatory activity via quantitative chemical proteomics. Organic and Biomolecular Chemistry, 2019, 17, 6854-6859.	2.8	9
48	Rhodiumâ€Catalyzed Pauson–Khandâ€Type Cyclization of 1,5â€Alleneâ€Alkynes: A Chirality Transfer Strategy for Optically Active Bicyclic Ketones. Chemistry - A European Journal, 2019, 25, 9529-9533.	3.3	9
49	Hydroxy group-enabled highly regio- and stereo-selective hydrocarboxylation of alkynes. Chemical Science, 2019, 10, 5505-5512.	7.4	9
50	Chiral tertiary propargylic alcohols <i>via</i> Pd-catalyzed carboxylative kinetic resolution. Organic Chemistry Frontiers, 2020, 7, 3907-3911.	4.5	9
51	Cobaltâ€Catalyzed Regio―and Stereoselective Hydroboration of Allenes. Angewandte Chemie, 2020, 132, 6337-6342.	2.0	9
52	Rh-Catalyzed oxidative homo-coupling cyclization of 2,3-allenols to conjugated furylenones. Organic Chemistry Frontiers, 2021, 8, 4432-4437.	4.5	9
53	Palladium-catalyzed intermolecular dearomatic allenylation of hydrocycloalk[<i>b</i>]indoles with 2,3-allenyl carbonates. Organic Chemistry Frontiers, 2018, 5, 1664-1669.	4.5	8
54	Benzene construction <i>via</i> Pd-catalyzed cyclization of 2,7-alkadiynylic carbonates in the presence of alkynes. Chemical Science, 2019, 10, 2228-2235.	7.4	8

#	Article	IF	CITATIONS
55	Chirality memory of α-methylene-ï€-allyl iridium species. Chemical Science, 2021, 12, 11831-11838.	7.4	7
56	Studies on Iron-Catalyzed Aerobic Oxidation of Benzylic Alcohols to Carboxylic Acids. Synthesis, 2018, 50, 1629-1639.	2.3	6
57	Asymmetric construction of pyrido[1,2- <i>a</i>]-1 <i>H</i> -indole derivatives <i>via</i> a gold-catalyzed cycloisomerization. Chemical Science, 2021, 12, 696-701.	7.4	6
58	Rh-Catalyzed cyclization of 2,3-allenoic acids in the presence of 2,3-allenols. Chemical Communications, 2021, 57, 10411-10414.	4.1	6
59	Pd/Gorlos-Phos-catalyzed cross-coupling between two different aryl chlorides in the presence of B ₂ Pin ₂ and cytotoxicity studies of the products. Organic Chemistry Frontiers, 2018, 5, 3319-3323.	4.5	5
60	Efficient Syntheses of Traumatic Lactone and Rhizobialide. Chemistry - A European Journal, 2019, 25, 9948-9958.	3.3	5
61	A palladium-catalyzed approach to allenic aromatic ethers and first total synthesis of terricollene A. Chemical Science, 2021, 12, 9347-9351.	7.4	5
62	Copper(I) Iodide-Catalyzed Asymmetric Synthesis of Optically Active Tertiary α-Allenols. Synlett, 2019, 30, 477-482.	1.8	4
63	<i>E</i> -Selective <i>N</i> -heterocyclic carbene-catalyzed reaction of aldehydes and butadienoates: effect of water and chloroform as the proton shuttle. Organic Chemistry Frontiers, 2018, 5, 2560-2567.	4.5	3
64	Palladium catalyzed regioselective elimination–hydrocarbonylation of propargylic alcohols. Chemical Communications, 2019, 55, 7938-7941.	4.1	3
65	Construction of Benzopolycycles via Pd-Catalyzed Intermolecular Cyclization of 2,7-Alkadiynylic Carbonates with Terminal Propargyl Tertiary Alcohols. Organic Letters, 2019, 21, 3523-3527.	4.6	3
66	Palladium-catalyzed intermolecular allenylation reactions of 2,3-disubstituted indoles and allenyl carbonate. Organic and Biomolecular Chemistry, 2019, 17, 7128-7130.	2.8	2
67	Room Temperature Allenation of Terminal Alkynes with Aldehydes. Angewandte Chemie, O, , .	2.0	2
68	Pd/Gorlosâ€Phos atalyzed chemoselective amination of bromophenyl chlorides with primary arylamines. Helvetica Chimica Acta, 0, , e2100173.	1.6	1
69	EATA Reaction Catalyzed by Copper Halides of Mixed Oxidation States and Its Application to Total Synthesis of Scorodonin. Angewandte Chemie, 0, , .	2.0	0