List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3767723/publications.pdf Version: 2024-02-01

FEVZI DALDAL

#	Article	IF	CITATIONS
1	Resistance mutations reveal the atovaquone-binding domain of cytochrome b in malaria parasites. Molecular Microbiology, 1999, 33, 704-711.	2.5	291
2	Reversible redox energy coupling in electron transfer chains. Nature, 2004, 427, 607-612.	27.8	254
3	Cytochrome bc1 complex [2Fe-2S] cluster and its interaction with ubiquinone and ubihydroquinone at the Qo site: a double-occupancy Qo site model. Biochemistry, 1992, 31, 3144-3158.	2.5	207
4	X-Ray Structure of Rhodobacter Capsulatus Cytochrome bc1: Comparison with its Mitochondrial and Chloroplast Counterparts. Photosynthesis Research, 2004, 81, 251-275.	2.9	191
5	Ubiquinone Pair in the Qo Site Central to the Primary Energy Conversion Reactions of Cytochrome bc1 Complex. Biochemistry, 1995, 34, 15979-15996.	2.5	173
6	Cytochrome c biogenesis: the Ccm system. Trends in Microbiology, 2010, 18, 266-274.	7.7	166
7	Rhodobacter capsulatus Contains a Novel cb-Type Cytochrome c Oxidase without a CuA Center. Biochemistry, 1994, 33, 3120-3127.	2.5	160
8	A compilation of mutations located in the cytochrome b subunit of the bacterial and mitochondrial bc1 complex. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1275, 61-69.	1.0	159
9	Thebc 1 complexes ofRhodobacter sphaeroides andRhodobacter capsulatus. Journal of Bioenergetics and Biomembranes, 1993, 25, 195-209.	2.3	152
10	Dre2, a Conserved Eukaryotic Fe/S Cluster Protein, Functions in Cytosolic Fe/S Protein Biogenesis. Molecular and Cellular Biology, 2008, 28, 5569-5582.	2.3	145
11	Large scale domain movement in cytochrome bc1: a new device for electron transfer in proteins. Trends in Biochemical Sciences, 2001, 26, 445-451.	7.5	133
12	A reductant-induced oxidation mechanism for Complex I. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1364, 245-257.	1.0	130
13	Potential ligands to the [2Fe-2S] Rieske cluster of the cytochrome bc1 complex of Rhodobacter capsulatus probed by site-directed mutagenesis. Biochemistry, 1992, 31, 3342-3351.	2.5	127
14	Primary structure of the bc1 complex of Rhodopseudomonas capsulata. Journal of Molecular Biology, 1987, 195, 13-24.	4.2	119
15	Adaptation of aerobic respiration to low O ₂ environments. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14109-14114.	7.1	119
16	Global Analysis of the RNA-Protein Interaction and RNA Secondary Structure Landscapes of the Arabidopsis Nucleus. Molecular Cell, 2015, 57, 376-388.	9.7	105
17	<i>Vibrio cholerae</i> anaerobic induction of virulence gene expression is controlled by thiol-based switches of virulence regulator AphB. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 810-815.	7.1	104
18	The RegB/RegA two-component regulatory system controls synthesis of photosynthesis and respiratory electron transfer components in Rhodobacter capsulatus. Journal of Molecular Biology, 2001, 309, 121-138.	4.2	99

#	Article	IF	CITATIONS
19	Hydroubiquinone-cytochrome c2 oxidoreductase from Rhodobacter capsulatus: Definition of a minimal, functional isolated preparation. Biochemistry, 1993, 32, 1310-1317.	2.5	93
20	Molecular cloning of the gene for phosphofructokinase-2 of Escherichia coli and the nature of a mutation, pfkB1, causing a high level of the enzyme. Journal of Molecular Biology, 1983, 168, 285-305.	4.2	92
21	Requirement of histidine 217 for ubiquinone reductase activity (Qi site) in the cytochrome bc1 complex. Biochemistry, 1994, 33, 723-733.	2.5	91
22	Novel Rhodobacter capsulatus genes required for the biogenesis of various c-type cytochromes. Molecular Microbiology, 2000, 35, 123-138.	2.5	88
23	Roles of the ccoGHIS gene products in the biogenesis of the cbb3-type cytochrome c oxidase. Journal of Molecular Biology, 2000, 297, 49-65.	4.2	88
24	Multi-step Assembly Pathway of the cbb3-type Cytochrome c Oxidase Complex. Journal of Molecular Biology, 2006, 355, 989-1004.	4.2	85
25	Biogenesis of cbb3-type cytochrome c oxidase in Rhodobacter capsulatus. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 898-910.	1.0	85
26	Isolation of the structural genes for the Rieske Feî—,S protein, cytochrome b and cytochrome c1 all components of the ubiquinol: Cytochrome c2 oxidoreductase complex of Rhodopseudomonas capsulata. Journal of Molecular Biology, 1987, 195, 1-12.	4.2	84
27	Uncovering the Molecular Mode of Action of the Antimalarial Drug Atovaquone Using a Bacterial System. Journal of Biological Chemistry, 2005, 280, 27458-27465.	3.4	83
28	Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD. EMBO Journal, 2002, 21, 3960-3969.	7.8	78
29	Novel Transporter Required for Biogenesis of <i>cbb</i> ₃ -Type Cytochrome <i>c</i> Oxidase in Rhodobacter capsulatus. MBio, 2012, 3, .	4.1	75
30	Photosynthetic electron transfer in the absence of cytochrome c2 in Rhodopseudomonas capsulata: cytochrome c2 is not essential for electron flow from the cytochrome bc1 complex to the photochemical reaction center. Biochemistry, 1986, 25, 5208-5214.	2.5	72
31	Tellurite effects on Rhodobacter capsulatus cell viability and superoxide dismutase activity under oxidative stress conditions. Research in Microbiology, 2005, 156, 807-813.	2.1	72
32	Isolation and Characterization of <i>Rhodobacter capsulatus</i> Mutants Affected in Cytochrome <i>cbc/i> ₃ Oxidase Activity. Journal of Bacteriology, 1998, 180, 969-978.</i>	2.2	72
33	Roles of the Soluble Cytochrome c2 and Membrane-Associated Cytochrome cy of Rhodobacter capsulatus in Photosynthetic Electron Transfer. Biochemistry, 1994, 33, 2496-2502.	2.5	65
34	Isolation and Characterization of a Two-Subunit Cytochromebâ^'c1Subcomplex fromRhodobacter capsulatusand Reconstitution of Its Ubihydroquinone Oxidation (Qo) Site with Purified Fe-S Protein Subunitâ€. Biochemistry, 1998, 37, 16242-16251.	2.5	65
35	Probing the Role of the Feâ~'S Subunit Hinge Region during QoSite Catalysis inRhodobacter capsulatus bc1Complexâ€. Biochemistry, 2000, 39, 15475-15483.	2.5	65
36	Molecular mechanisms of superoxide production by complex III: A bacterial versus human mitochondrial comparative case study. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 1332-1339.	1.0	65

#	Article	IF	CITATIONS
37	Membrane targeting of a folded and cofactor-containing protein. FEBS Journal, 2003, 270, 1211-1221.	0.2	63
38	Binding Dynamics at the Quinone Reduction (Qi) Site Influence the Equilibrium Interactions of the Iron Sulfur Protein and Hydroquinone Oxidation (Qo) Site of the Cytochromebc1Complexâ€. Biochemistry, 2005, 44, 10520-10532.	2.5	62
39	Cu Homeostasis in Bacteria: The Ins and Outs. Membranes, 2020, 10, 242.	3.0	60
40	Mutagenesis of methionine-183 drastically affects the physicochemical properties of cytochrome c1 of the bc1 complex of Rhodobacter capsulatus. Biochemistry, 1992, 31, 11864-11873.	2.5	58
41	Cytochrome c biogenesis System I: An intricate process catalyzed by a maturase supercomplex?. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 989-998.	1.0	58
42	Movement of the Iron-Sulfur Subunit beyond the efLoop of Cytochrome b Is Required for Multiple Turnovers of the bc1 Complex but Not for Single Turnover Qo Site Catalysis. Journal of Biological Chemistry, 2002, 277, 3471-3476.	3.4	55
43	Intermonomer Electron Transfer between the Low-Potential <i>b</i> Hemes of Cytochrome <i>bc</i> ₁ . Biochemistry, 2011, 50, 1651-1663.	2.5	55
44	Rhodobacter capsulatus mutants lacking the Rieske iron sulfur protein form a stable cytochrome bc1 subcomplex with an intact quinone reduction site. Biochemistry, 1992, 31, 3351-3358.	2.5	53
45	Across Membrane Communication between the Q _o and Q _i Active Sites of Cytochrome <i>bc</i> ₁ . Biochemistry, 2009, 48, 1888-1899.	2.5	53
46	A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate. Developmental Cell, 2017, 41, 204-220.e5.	7.0	53
47	fbc Operon, encoding the Rieske Feî—,S protein cytochrome b, and cytochrome c1 apoproteins previously described from Rhodopseudomonas sphaeroides, is from Rhodopseudomonas capsulata. Journal of Molecular Biology, 1987, 195, 25-29.	4.2	51
48	The [2Fe-2S] Cluster Em as an Indicator of the Iron-Sulfur Subunit Position in the Ubihydroquinone Oxidation Site of the Cytochrome bc1Complex. Journal of Biological Chemistry, 2002, 277, 3464-3470.	3.4	51
49	Stability of the <i>cbb</i> ₃ -Type Cytochrome Oxidase Requires Specific CcoQ-CcoP Interactions. Journal of Bacteriology, 2008, 190, 5576-5586.	2.2	51
50	Nucleotide sequence of gene pfkB encoding the minor phosphofructokinase of Escherichia coli K-12. Gene, 1984, 28, 337-342.	2.2	50
51	Tyrosine 147 of cytochrome b is required for efficient electron transfer at the ubihydroquinone oxidase site (Qo) of the cytochrome bc1 complex. Biochemistry, 1995, 34, 16004-16012.	2.5	49
52	Mobile Cytochrome c 2 and Membrane-Anchored Cytochrome c y Are Both Efficient Electron Donors to the cbb 3 - and aa 3 -Type Cytochrome c Oxidases during Respiratory Growth of Rhodobacter sphaeroides. Journal of Bacteriology, 2001, 183, 2013-2024.	2.2	48
53	The cytochrome b p.278Y>C mutation causative of a multisystem disorder enhances superoxide production and alters supramolecular interactions of respiratory chain complexes. Human Molecular Genetics, 2013, 22, 2141-2151.	2.9	46
54	Intracytoplasmic Copper Homeostasis Controls Cytochrome <i>c</i> Oxidase Production. MBio, 2014, 5, e01055-13.	4.1	46

#	Article	IF	CITATIONS
55	Conserved Nonliganding Residues of theRhodobacter capsulatusRieske Iron-Sulfur Protein of thebc1Complex Are Essential for Protein Structure, Properties of the [2Fe-2S] Cluster, and Communication with the Quinone Poolâ€. Biochemistry, 1997, 36, 11675-11684.	2.5	44
56	Proteolytic Cleavage of the Feâ^'S Subunit Hinge Region ofRhodobacter capsulatusbc1Complex: Effects of Inhibitors and Mutationsâ€. Biochemistry, 2000, 39, 15484-15492.	2.5	44
57	Blood cells from Friedreich ataxia patients harbor frataxin deficiency without a loss of mitochondrial function. Mitochondrion, 2011, 11, 342-350.	3.4	44
58	The Cytochrome bc1Complex and its Homologue the b6f Complex: Similarities and Differences. Photosynthesis Research, 2004, 79, 25-44.	2.9	43
59	The Amino-Terminal Portion of the Rieske Iron-Sulfur Protein Contributes to the Ubihydroquinone Oxidation Site Catalysis of theRhodobacter capsulatus bc1Complexâ€. Biochemistry, 1997, 36, 11685-11696.	2.5	42
60	Proteinâ^'Protein Interactions between Cytochromeband the Fe-S Protein Subunits during QH2Oxidation and Large-Scale Domain Movement in thebc1Complexâ€. Biochemistry, 2003, 42, 1499-1507.	2.5	40
61	The Raised Midpoint Potential of the [2Fe2S] Cluster of Cytochromebc11s Mediated by Both the QoSite Occupants and the Head Domain Position of the Feâ^'S Protein Subunitâ€. Biochemistry, 2004, 43, 2217-2227.	2.5	40
62	Compensatory thio–redox interactions between DsbA, CcdA and CcmG unveil the apocytochrome c holdase role of CcmG during cytochrome <i>c</i> maturation. Molecular Microbiology, 2008, 70, 652-666.	2.5	40
63	The Scol homologue SenC is a copper binding protein that interacts directly with the cbb3-type cytochrome oxidase in Rhodobacter capsulatus. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 2005-2015.	1.0	40
64	Physiological electron donors to the photochemical reaction center of Rhodobacter capsulatus. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 894, 370-378.	1.0	39
65	Ornithine lipid is required for optimal steady-state amounts of c-type cytochromes in Rhodobacter capsulatus. Molecular Microbiology, 2006, 61, 418-435.	2.5	39
66	The role of molecular modeling in the design of analogues of the fungicidal natural products crocacins A and D. Bioorganic and Medicinal Chemistry, 2008, 16, 10345-10355.	3.0	39
67	The Cytochrome c Maturation Components CcmF, CcmH, and CcmI Form a Membrane-integral Multisubunit Heme Ligation Complex. Journal of Biological Chemistry, 2008, 283, 29715-29722.	3.4	39
68	Cooperation between two periplasmic copper chaperones is required for full activity of the <i>cbb</i> ₃ â€ŧype cytochrome <i>c</i> oxidase and copper homeostasis in <i>Rhodobacter capsulatus</i> . Molecular Microbiology, 2016, 100, 345-361.	2.5	39
69	Loss of a Conserved Tyrosine Residue of Cytochrome b Induces Reactive Oxygen Species Production by Cytochrome bc1. Journal of Biological Chemistry, 2011, 286, 18139-18148.	3.4	38
70	Rhodobacter capsulatus MT113: A single mutation results in the absence of c-type cytochromes and in the absence of the cytochrome bc1 complex. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 890, 292-301.	1.0	36
71	Interactions between the Cytochromeb, Cytochromec1, and Feâ^'S Protein Subunits at the Ubihydroquinone Oxidation Site of thebc1Complex ofRhodobactercapsulatusâ€. Biochemistry, 1998, 37, 8105-8114.	2.5	36
72	The Dithiol:Disulfide Oxidoreductases DsbA and DsbB of Rhodobacter capsulatus Are Not Directly Involved in Cytochrome c Biogenesis, but Their Inactivation Restores the Cytochrome c Biogenesis Defect of CcdA-Null Mutants. Journal of Bacteriology, 2003, 185, 3361-3372.	2.2	36

#	Article	IF	CITATIONS
73	Demonstration of Short-lived Complexes of Cytochrome c with Cytochrome bc1 by EPR Spectroscopy. Journal of Biological Chemistry, 2008, 283, 24826-24836.	3.4	36
74	Membrane-Anchored Cytochrome cy Mediated Microsecond Time Range Electron Transfer from the Cytochrome bc1 Complex to the Reaction Center in Rhodobacter capsulatus. Biochemistry, 1998, 37, 5501-5510.	2.5	35
75	Controlling the Functionality of Cytochromec1Redox Potentials in theRhodobacter capsulatus bc1Complex through Disulfide Anchoring of a Loop and a β-Branched Amino Acid near the Heme-Ligating Methionineâ€. Biochemistry, 2001, 40, 14547-14556.	2.5	35
76	Cytochrome c2 mutants of Rhodobacter capsulatus. Archives of Biochemistry and Biophysics, 1992, 292, 419-426.	3.0	34
77	Overproduction of CcmG and CcmFH Rc Fully Suppresses the c -Type Cytochrome Biogenesis Defect of Rhodobacter capsulatus CcmI-Null Mutants. Journal of Bacteriology, 2005, 187, 4245-4256.	2.2	32
78	Ubiquinone Binding Capacity of theRhodobacter capsulatusCytochromebc1Complex:Â Effect of Diphenylamine, a Weak Binding QOSite Inhibitorâ€. Biochemistry, 1999, 38, 3440-3446.	2.5	31
79	lon Pair Formation between Basic Residues at 144 of the Cyt b Polypeptide and the Ubiquinones at the Qo Site of the Cyt bc1 Complex. Biochemistry, 1995, 34, 15997-16003.	2.5	30
80	The cbb3-Type Cytochrome c Oxidase from Rhodobacter capsulatus Contains a Unique Active Site. Journal of the American Chemical Society, 1995, 117, 9363-9364.	13.7	30
81	A phosphoethanolamine-modified glycosyl diradylglycerol in the polar lipids of Clostridium tetani. Journal of Lipid Research, 2010, 51, 1953-1961.	4.2	30
82	Zinc Inhibition of Bacterial Cytochrome <i>bc</i> ₁ Reveals the Role of Cytochrome <i>bc</i> b E295 in Proton Release at the Q _o Site. Biochemistry, 2011, 50, 4263-4272.	2.5	30
83	The role of c-type cytochromes in catalyzing oxidative and photosynthetic electron transport in the dual functional plasmamembrane of facultative phototrophs. Archives of Microbiology, 1993, 160, 413-423.	2.2	29
84	Structure and function of the bacterial bc1 complex: domain movement, subunit interactions, and emerging rationale engineering attempts. Journal of Bioenergetics and Biomembranes, 1999, 31, 275-288.	2.3	29
85	X-Ray Absorption Studies of Zn2+ Binding Sites in Bacterial, Avian, and Bovine Cytochrome bc1 Complexes. Biophysical Journal, 2007, 93, 2934-2951.	0.5	29
86	The Putative Assembly Factor CcoH Is Stably Associated with the <i>cbb</i> ₃ -Type Cytochrome Oxidase. Journal of Bacteriology, 2010, 192, 6378-6389.	2.2	29
87	The role of the membrane bound cytochromes of b- and c-type in the electron transport chain of Rhodobacter capsulatus. Archives of Microbiology, 1992, 157, 367-374.	2.2	28
88	sacB –5-Fluoroorotic Acid– pyrE -Based Bidirectional Selection for Integration of Unmarked Alleles into the Chromosome of Rhodobacter capsulatus. Applied and Environmental Microbiology, 2005, 71, 3014-3024.	3.1	28
89	Copper transport and regulation in <i>Schizosaccharomyces pombe</i> . Biochemical Society Transactions, 2013, 41, 1679-1686.	3.4	27
90	An Alteration in Phosphofructokinase 2 of <i>Escherichia coli</i> which Impairs Gluconeogenic Growth and Improves Growth on Sugars. FEBS Journal, 1982, 126, 373-379.	0.2	26

#	Article	IF	CITATIONS
91	Ccml Subunit of CcmFHI Heme Ligation Complex Functions as an Apocytochrome c Chaperone during c-Type Cytochrome Maturation. Journal of Biological Chemistry, 2011, 286, 40452-40463.	3.4	25
92	Widespread Distribution and Functional Specificity of the Copper Importer CcoA: Distinct Cu Uptake Routes for Bacterial Cytochrome <i>c</i> Oxidases. MBio, 2018, 9, .	4.1	25
93	petR, located upstream of the fbcFBC operon encoding the cytochrome bc1complex, is homologous to bacterial response regulators and necessary for photosynthetic and respiratory growth of Rhodobacter capsulatus. Molecular Microbiology, 1992, 6, 1645-1654.	2.5	24
94	Membrane-Spanning and Periplasmic Segments of Ccml Have Distinct Functions during Cytochrome c Biogenesis in Rhodobacter capsulatus. Journal of Bacteriology, 2007, 189, 789-800.	2.2	24
95	Substitution of the Sixth Axial Ligand ofRhodobacter capsulatusCytochromec1Heme Yields Novel Cytochromec1Variants with Unusual Propertiesâ€. Biochemistry, 1999, 38, 7908-7917.	2.5	23
96	Overproduction or Absence of the Periplasmic Protease DegP Severely Compromises Bacterial Growth in the Absence of the Dithiol: Disulfide Oxidoreductase DsbA. Molecular and Cellular Proteomics, 2008, 7, 875-890.	3.8	23
97	Extracytoplasmic prosthetic group ligation to apoproteins: maturation of c-type cytochromes. Molecular Microbiology, 2006, 60, 537-541.	2.5	22
98	Cytochrome bc1-cy Fusion Complexes Reveal the Distance Constraints for Functional Electron Transfer Between Photosynthesis Components. Journal of Biological Chemistry, 2008, 283, 13973-13982.	3.4	22
99	A Copper Relay System Involving Two Periplasmic Chaperones Drives <i>cbb</i> ₃ -Type Cytochrome <i>c</i> Oxidase Biogenesis in <i>Rhodobacter capsulatus</i> . ACS Chemical Biology, 2018, 13, 1388-1397.	3.4	22
100	The Cu chaperone CopZ is required for Cu homeostasis in Rhodobacter capsulatus and influences cytochrome cbb 3 oxidase assembly. Molecular Microbiology, 2019, 111, 764-783.	2.5	22
101	Cloning and expression of Clostridium pasteurianum galactokinase gene in Escherichia coli K-12 and nucleotide sequence analysis of a region affecting the amount of the enzyme. Journal of Molecular Biology, 1985, 186, 533-545.	4.2	21
102	Modifications of the Lipoamide-containing Mitochondrial Subproteome in a Yeast Mutant Defective in Cysteine Desulfurase. Molecular and Cellular Proteomics, 2006, 5, 1426-1436.	3.8	20
103	Recent advances in cytochrome <i>bc</i> ₁ : Inter monomer electronic communication?. FEBS Letters, 2012, 586, 617-621.	2.8	19
104	<i>Rhodobacter capsulatus</i> OlsA Is a Bifunctional Enyzme Active in both Ornithine Lipid and Phosphatidic Acid Biosynthesis. Journal of Bacteriology, 2007, 189, 8564-8574.	2.2	18
105	The membrane-bound cytochrome cy of Rhodobacter capsulatus can serve as an electron donor to the photosynthetic reaction center of Rhodobacter sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1273, 159-164.	1.0	17
106	Non-inhibiting perturbation of the primary energy conversion site (Qosite) inRhodobacter capsulatusubihydroquinone:cytochromecoxidoreductase (cytochromebc1complex). FEBS Letters, 1998, 431, 423-426.	2.8	17
107	Overexpression of ccl1â^2 can bypass the need for the putative apocytochrome chaperone CycH during the biogenesis of c-type cytochromes. Molecular Microbiology, 2002, 46, 1069-1080.	2.5	17
108	Membrane-anchored cytochrome c as an electron carrier in photosynthesis and respiration: past, present and future of an unexpected discovery. Photosynthesis Research, 2003, 76, 127-134.	2.9	17

#	Article	IF	CITATIONS
109	The thioreduction component CcmG confers efficiency and the heme ligation component CcmH ensures stereo-specificity during cytochrome c maturation. Journal of Biological Chemistry, 2017, 292, 13154-13167.	3.4	17
110	The <i>cbb</i> ₃ -type cytochrome oxidase assembly factor CcoG is a widely distributed cupric reductase. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21166-21175.	7.1	17
111	Cryo-EM structures of engineered active bc1-cbb3 type CIII2CIV super-complexes and electronic communication between the complexes. Nature Communications, 2021, 12, 929.	12.8	17
112	Electron-transfer supercomplexes in photosynthesis and respiration. Trends in Microbiology, 2000, 8, 493-494.	7.7	16
113	Uncovering the Transmembrane Metal Binding Site of the Novel Bacterial Major Facilitator Superfamily-Type Copper Importer CcoA. MBio, 2016, 7, e01981-15.	4.1	16
114	Fine-tuning of the respiratory complexes stability and supercomplexes assembly in cells defective of complex III. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148133.	1.0	16
115	Crystallization and preliminary analysis of crystals of cytochrome c2 from Rhodopseudomonas capsulata. Journal of Molecular Biology, 1987, 195, 229-231.	4.2	15
116	[6] Using Genetics to Explore Cytochrome Function and Structure in Rhodobacter. Methods in Enzymology, 1998, 297, 81-94.	1.0	14
117	Roles in inhibitor recognition and quinol oxidation of the amino acid side chains at positions of cyt b providing resistance to Qo-inhibitors of the bc1complex from Rhodobacter capsulatus. Molecular Microbiology, 1993, 9, 965-978.	2.5	13
118	Intermonomer Electron Transfer between the <i>b</i> Hemes of Heterodimeric Cytochrome <i>bc</i> ₁ . Biochemistry, 2013, 52, 7196-7206.	2.5	13
119	Spectroscopic and oxidation–reduction properties of Rhodobacter capsulatus cytochrome c1 and its M183K and M183H variants. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1556, 175-186.	1.0	12
120	The Heme Chaperone ApoCcmE Forms a Ternary Complex with CcmI and Apocytochrome c. Journal of Biological Chemistry, 2013, 288, 6272-6283.	3.4	12
121	Comparative differential cuproproteomes of <i>Rhodobacter capsulatus</i> reveal novel copper homeostasis related proteins. Metallomics, 2020, 12, 572-591.	2.4	12
122	Soluble Variants of Rhodobacter capsulatus Membrane-anchored Cytochrome cy Are Efficient Photosynthetic Electron Carriers. Journal of Biological Chemistry, 2008, 283, 13964-13972.	3.4	11
123	Missense Mutations in Cytochrome <i>c</i> Maturation Genes Provide New Insights into Rhodobacter capsulatus cbb ₃ -Type Cytochrome <i>c</i> Oxidase Biogenesis. Journal of Bacteriology, 2013, 195, 261-269.	2.2	11
124	An Engineered Cytochrome <i>b</i> ₆ <i>c</i> ₁ Complex with a Split Cytochrome <i>b</i> Is Able To Support Photosynthetic Growth of <i>Rhodobacter capsulatus</i> . Journal of Bacteriology, 1999, 181, 5365-5372.	2.2	11
125	Engineering a prokaryotic apocytochrome c as an efficient substrate for Saccharomyces cerevisiae cytochrome c heme lyase. Biochemical and Biophysical Research Communications, 2012, 424, 130-135.	2.1	10
126	Cu Transport by the Extended Family of CcoA-like Transporters (CalT) in Proteobacteria. Scientific Reports, 2019, 9, 1208.	3.3	10

#	Article	IF	CITATIONS
127	Characterization of the pet operon of Rhodospirillum rubrum. Photosynthesis Research, 1992, 32, 79-94.	2.9	9
128	A functional hybrid between the cytochrome bc1 complex and its physiological membrane-anchored electron acceptor cytochrome cy in Rhodobacter capsulatus. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 346-352.	1.0	9
129	Absence of Thiol-Disulfide Oxidoreductase DsbA Impairs cbb3-Type Cytochrome c Oxidase Biogenesis in Rhodobacter capsulatus. Frontiers in Microbiology, 2017, 8, 2576.	3.5	8
130	Maturation of Rhodobacter capsulatus Multicopper Oxidase CutO Depends on the CopA Copper Efflux Pathway and Requires the cutF Product. Frontiers in Microbiology, 2021, 12, 720644.	3.5	8
131	A Glimpse into the Proteome of Phototrophic Bacterium Rhodobacter capsulatus. Advances in Experimental Medicine and Biology, 2010, 675, 179-209.	1.6	8
132	A Robust Genetic System for Producing Heterodimeric Native and Mutant Cytochrome <i>bc</i> ₁ . Biochemistry, 2013, 52, 7184-7195.	2.5	7
133	Complex II phosphorylation is triggered by unbalanced redox homeostasis in cells lacking complex III. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 182-190.	1.0	7
134	Isolation of mutants of Clostridium pasteurianum. Archives of Microbiology, 1985, 142, 93-96.	2.2	6
135	Role of Acidic and Aromatic Amino Acids inRhodobacter CapsulatusCytochromec1. A Site-Directed Mutagenesis Studyâ€. Biochemistry, 2003, 42, 8818-8830.	2.5	6
136	Biogenesis of Cytochrome c Complexes: From Insertion of Redox Cofactors to Assembly of Different Subunits. Advances in Photosynthesis and Respiration, 2016, , 527-554.	1.0	6
137	Biogenesis of c-type Cytochromes and Cytochrome Complexes. Advances in Photosynthesis and Respiration, 2009, , 407-423.	1.0	5
138	The cytochrome b Zn binding amino acid residue histidine 291 is essential for ubihydroquinone oxidation at the Qo site of bacterial cytochrome bc1. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1796-1806.	1.0	4
139	Ultrafast photochemistry of the bc ₁ complex. Physical Chemistry Chemical Physics, 2017, 19, 6807-6813.	2.8	4
140	Pseudomonas pseudoalcaligenes KF 707 grown with biphenyl expresses a cytochrome caa 3 oxidase that uses cytochrome c 4 as electron donor. FEBS Letters, 2018, 592, 901-915.	2.8	4
141	The cytochrome b lysine 329 residue is critical for ubihydroquinone oxidation and proton release at the Qo site of bacterial cytochrome bc1. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 167-179.	1.0	4
142	Structural and Mutational Studies of the Cytochrome bc 1 Complex. Advances in Photosynthesis and Respiration, 2009, , 425-450.	1.0	4
143	The K ^C Channel in the <i>cbb</i> ₃ -Type Respiratory Oxygen Reductase from Rhodobacter capsulatus Is Required for Both Chemical and Pumped Protons. Journal of Bacteriology, 2014, 196, 1825-1832.	2.2	2
144	The CopA2-Type P1B-Type ATPase Ccol Serves as Central Hub for cbb3-Type Cytochrome Oxidase Biogenesis. Frontiers in Microbiology, 2021, 12, 712465.	3.5	2

#	Article	IF	CITATIONS
145	During Cytochrome c Maturation Ccml Chaperones the Class I Apocytochromes until the Formation of Their b-Type Cytochrome Intermediates. Journal of Biological Chemistry, 2015, 290, 16989-17003.	3.4	1
146	Editorial: Microbial Bioenergetics. Frontiers in Microbiology, 2021, 12, 793917.	3.5	1
147	Cysteine Mutants of the Major Facilitator Superfamily-Type Transporter CcoA Provide Insight into Copper Import. MBio, 2021, 12, e0156721.	4.1	0
148	Ornithine Lipid is Required for câ \in type Cytochrome Biogenesis. FASEB Journal, 2006, 20, .	0.5	0
149	Mitochondrial Proteome from Human Peripheral Blood Cells Blood, 2006, 108, 4193-4193.	1.4	0
150	New Evidence for a Novel Biosynthetic Pathway to Plasmalogens in Anaerobic Bacteria. FASEB Journal, 2011, 25, .	0.5	0
151	Membrane-anchored cytochrome c as an electron carrier in photosynthesis and respiration: past, present and future of an unexpected discovery. , 2005, , 471-478.		0