Airat Khamatgalimov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3767688/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DFT Quantum-Chemical Calculation of Thermodynamic Parameters and DSC Measurement of Thermostability of Novel Benzofuroxan Derivatives Containing Triazidoisobutyl Fragments. International Journal of Molecular Sciences, 2022, 23, 1471.	4.1	3
2	Methacrylic copolymers with quinoxaline chromophores in the side chain exhibiting quadratic nonlinear optical response. Journal of Applied Polymer Science, 2022, 139, .	2.6	2
3	D-ï€-A chromophores with a quinoxaline core in the ï€-bridge and bulky aryl groups in the acceptor: Synthesis, properties, and femtosecond nonlinear optical activity of the chromophore/PMMA guest-host materials. Dyes and Pigments, 2021, 184, 108801.	3.7	27
4	Radical character of non-IPR isomer 17418 (C1) of fullerene C76. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 678-684.	2.1	1
5	Substructural Approach for Assessing the Stability of Higher Fullerenes. International Journal of Molecular Sciences, 2021, 22, 3760.	4.1	10
6	Fullerenes C100 and C108: new substructures of higher fullerenes. Structural Chemistry, 2021, 32, 2283-2290.	2.0	0
7	Mitochondria-targeted mesoporous silica nanoparticles noncovalently modified with triphenylphosphonium cation: Physicochemical characteristics, cytotoxicity and intracellular uptake. International Journal of Pharmaceutics, 2021, 604, 120776.	5.2	7
8	Open-shell nature of non-IPR fullerene С40: isomers 29 (C2) and 40 (Td). Journal of Molecular Modeling, 2021, 27, 22.	1.8	5
9	Radical character of non-IPR isomer 28324 of C80 fullerene. Russian Chemical Bulletin, 2021, 70, 1651-1656.	1.5	0
10	Indolizine-based chromophores with octatetraene π-bridge and tricyanofurane acceptor: Synthesis, photophysical, electrochemical and electro-optic properties. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112125.	3.9	9
11	Thermally Stable Nitrothiacalixarene Chromophores: Conformational Study and Aggregation Behavior. International Journal of Molecular Sciences, 2020, 21, 6916.	4.1	6
12	Features of molecular structure of small non-IPR fullerenes: the two isomers of C50. Theoretical Chemistry Accounts, 2020, 139, 1.	1.4	6
13	On the Effect of the Nature of Substituents on the Antimicrobial Activity of Water-Soluble Acylhydrazones on the Isatin Scaffold. Doklady Chemistry, 2020, 494, 136-140.	0.9	5
14	Design of Novel 4-Aminobenzofuroxans and Evaluation of Their Antimicrobial and Anticancer Activity. International Journal of Molecular Sciences, 2020, 21, 8292.	4.1	5
15	Kinetic Analysis of the Thermal Decomposition of Lowland and High-Moor Peats. Solid Fuel Chemistry, 2020, 54, 154-162.	0.7	9
16	New complexes of pectic polysaccharides with nonsteroidal anti-inflammatory drugs. Russian Chemical Bulletin, 2020, 69, 572-580.	1.5	3
17	The key feature of instability of small non-IPR closed-shell fullerenes: three isomers of C40. Mendeleev Communications, 2020, 30, 725-727.	1.6	4
18	Instability of molecular structure of non-IPR isomer 17984 (C1) of the C76 fullerene and probable ways of its stabilization. Butlerovskie SoobÅeniâ, 2020, 63, 1-9.	0.1	0

AIRAT KHAMATGALIMOV

#	Article	IF	CITATIONS
19	Nanosized carriers for hydrophobic compounds based on mesoporous silica: synthesis and adsorption properties. Russian Chemical Bulletin, 2019, 68, 1358-1365.	1.5	2
20	Zn and Co redox active coordination polymers as efficient electrocatalysts. Dalton Transactions, 2019, 48, 3601-3609.	3.3	41
21	Investigation of hydrogen bonding in p-sulfonatocalix[4]arene and its thermal stability by vibrational spectroscopy. Journal of Molecular Structure, 2019, 1195, 403-410.	3.6	9
22	Synthesis, Physicochemical Properties and Antiâ€Fatigue Effect of Magnesium, Zinc and Chromium Polygalacturonate Based Composition. ChemistrySelect, 2019, 4, 4331-4338.	1.5	1
23	Ythrene: From the Real Radical Fullerene Substructure to Hypothetical (yet?) Radical Molecules. Journal of Physical Chemistry C, 2019, 123, 1954-1959.	3.1	6
24	Large nonlinear optical activity of chromophores with divinylquinoxaline conjugated π-bridge. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 370, 58-66.	3.9	22
25	High thermally stable D–ï€â€"A chromophores with quinoxaline moieties in the conjugated bridge: Synthesis, DFT calculations and physical properties. Dyes and Pigments, 2018, 156, 175-184.	3.7	27
26	Radical IPR Fullerenes C ₇₄ (D _{3h}) and C ₇₆ (T _d): Dimer, Trimer, etc. Experiments and Theory. Journal of Physical Chemistry C, 2018, 122, 3146-3151.	3.1	8
27	A nickel-based pectin coordination polymer as an oxygen reduction reaction catalyst for proton-exchange membrane fuel cells. Inorganic Chemistry Frontiers, 2018, 5, 780-784.	6.0	15
28	Synthesis and antimicrobial activity evaluation of some novel water-soluble isatin-3-acylhydrazones. Monatshefte Für Chemie, 2018, 149, 111-117.	1.8	24
29	Isomeric indolizine-based π-expanded push–pull NLO-chromophores: Synthesis and comparative study. Journal of Molecular Structure, 2018, 1156, 74-82.	3.6	16
30	New polymethacrylic nonlinear optical materials containing multichromophores in the side chain. Mendeleev Communications, 2018, 28, 272-274.	1.6	4
31	Composite materials containing chromophores with 3,7-(di)vinylquinoxalinone π-electron bridge doped into PMMA: Atomistic modeling and measurements of quadratic nonlinear optical activity. Dyes and Pigments, 2018, 158, 131-141.	3.7	29
32	Nonlinear optical activity of push–pull indolizine-based chromophores with various acceptor moieties. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 764-772.	3.9	13
33	Stabilization of IPR open-shell fullerenes C ₇₄ (D _{3h}) and C ₇₆ (T _d) in radical addition reactions. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 128-132.	2.1	5
34	Molecular structures of the open-shell IPR isomers of fullerene C90. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 179-184.	2.1	4
35	Thermogravimetric and kinetic analyses of the thermal decomposition of fuel wood. Solid Fuel Chemistry, 2017, 51, 83-87.	0.7	4
36	Cationic amphiphiles bearing imidazole fragment: From aggregation properties to potential in biotechnologies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 990-997.	4.7	43

#	Article	IF	CITATIONS
37	Structural aspects of partial solid solution formation: two crystalline modifications of a chiral derivative of 1,5-dihydro-2 <i>H</i> -pyrrol-2-one under consideration. CrystEngComm, 2017, 19, 7277-7286.	2.6	18
38	Push–pull isomeric chromophores with vinyl- and divinylquinoxaline-2-one units as π-electron bridge: Synthesis, photophysical, thermal and electro-chemical properties. Dyes and Pigments, 2017, 146, 82-91.	3.7	23
39	Aggregation Capacity and Complexation Properties of a System Based on an Imidazole-Containing Amphiphile and Bovine Serum Albumin. Russian Journal of General Chemistry, 2017, 87, 2826-2831.	0.8	16
40	Synthesis, Self-Association, and Solubilizing Ability of an Amphiphilic Derivative of Poly(ethylene) Tj ETQq0 0 0 r	gBT/Qverl	lock 10 Tf 50 (
41	Synthesis and characterization of new second-order NLO chromophores containing the isomeric indolizine moiety for electro-optical materials. Dyes and Pigments, 2017, 147, 444-454.	3.7	32
42	Molecular structures of unstable isolated-pentagon-rule fullerenes C72–C86. Russian Chemical Reviews, 2016, 85, 836-853.	6.5	16
43	Synthesis and physicochemical properties of antianemic iron and calcium complexes with sodium polygalacturonate. Doklady Physical Chemistry, 2016, 467, 45-48.	0.9	9
44	Chemoselective oxidation of 1-alkenylisatins with m-chloroperbenzoic acid. Synthesis of new derivatives of isatoic anhydride. Russian Journal of General Chemistry, 2015, 85, 2030-2036.	0.8	3
45	Stability of Isolated-Pentagon-Rule Isomers of Fullerene C ₇₆ . Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 148-152.	2.1	13
46	Electronic structures of some of C84 fullerene isomers and the structures of their perfluoroalkyl derivatives. Russian Journal of Physical Chemistry A, 2014, 88, 103-107.	0.6	4
47	Molecular weight parameters of cellulose nitrates modified with alcohols. Russian Journal of General Chemistry, 2014, 84, 758-762.	0.8	1
48	Experimental vibrational spectra and computational study of 1,4-diazabicyclo[2.2.2]octane. Journal of Molecular Structure, 2012, 1028, 134-140.	3.6	23
49	IR and Raman spectra, hydrogen bonds, and conformations of N-(2-hydroxyethyl)-4,6-dimethyl-2-oxo-1,2-dihydropyrimidine (drug Xymedone). Russian Chemical Bulletin, 2012, 61, 1199-1206.	1.5	9
50	24 IPR isomers of fullerene C ₈₄ : Cage deformation as geometrical characteristic of local strains. International Journal of Quantum Chemistry, 2012, 112, 1055-1065.	2.0	9
51	Electronic Structure and Stability of Fullerene C ₈₂ Isolated-Pentagon-Rule Isomers. Journal of Physical Chemistry A, 2011, 115, 12315-12320.	2.5	22
52	Electronic Structure and Stability of C ₈₀ Fullerene IPR Isomers. Fullerenes Nanotubes and Carbon Nanostructures, 2011, 19, 599-604.	2.1	19
53	Electronic structure and stability of C ₈₆ fullerene Isolatedâ€Pentagonâ€Rule isomers. International Journal of Quantum Chemistry, 2011, 111, 2966-2971.	2.0	5
54	Deformation and thermodynamic instability of a C84 fullerene cage. Russian Journal of Physical Chemistry A, 2010, 84, 636-641.	0.6	13

#	Article	IF	CITATIONS
55	Reaction of rhodium trichloride with oxyethylated calix[4]resorcinarene. Russian Journal of General Chemistry, 2010, 80, 478-484.	0.8	0
56	Unusual pentagon and hexagon geometry of three isomers (no 1, 20, and 23) of fullerene C ₈₄ . International Journal of Quantum Chemistry, 2008, 108, 1334-1339.	2.0	19
57	The structure of fullerene C66, which does not obey the rule of isolated pentagons, and endohedral metallofullerene Sc2@C66: Quantum-chemical calculations. Russian Journal of Physical Chemistry A, 2008, 82, 1164-1169.	0.6	9
58	Stability of the Nonâ€IPR Isomers 6140 (D ₃) and 6275 (D ₃) of Fullerene C ₆₈ . Fullerenes Nanotubes and Carbon Nanostructures, 2008, 16, 542-545.	2.1	9
59	ELECTRONIC STRUCTURE AND STABILITY OF HIGHER FULLERENES. , 2007, , 437-441.		5
60	Regularities in the molecular structures of stable fullerenes. Russian Chemical Reviews, 2006, 75, 981-988.	6.5	33
61	Open-shell fullerene C74: phenalenyl-radical substructures. Chemical Physics Letters, 2003, 377, 263-268.	2.6	54
62	Features of molecular structures of some IPR isomers of C96 fullerene. Structural Chemistry, 0, , 1.	2.0	0