Yingying Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3767516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Biologically Interpretable Two-Stage Deep Neural Network (BIT-DNN) for Vegetation Recognition From Hyperspectral Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-20.	6.3	11
2	Combining Random Forest and XGBoost Methods in Detecting Early and Mid-Term Winter Wheat Stripe Rust Using Canopy Level Hyperspectral Measurements. Agriculture (Switzerland), 2022, 12, 74.	3.1	21
3	Dynamic Forecast of Desert Locust Presence Using Machine Learning with a Multivariate Time Lag Sliding Window Technique. Remote Sensing, 2022, 14, 747.	4.0	9
4	Remote Sensing Monitoring of Winter Wheat Stripe Rust Based on mRMR-XGBoost Algorithm. Remote Sensing, 2022, 14, 756.	4.0	18
5	A Landscape-Based Habitat Suitability Model (LHS Model) for Oriental Migratory Locust Area Extraction at Large Scales: A Case Study along the Middle and Lower Reaches of the Yellow River. Remote Sensing, 2022, 14, 1058.	4.0	2
6	Integrating Remote Sensing and Meteorological Data to Predict Wheat Stripe Rust. Remote Sensing, 2022, 14, 1221.	4.0	6
7	Combining Disease Mechanism and Machine Learning to Predict Wheat Fusarium Head Blight. Remote Sensing, 2022, 14, 2732.	4.0	4
8	Wheat Yellow Rust Detection Using UAV-Based Hyperspectral Technology. Remote Sensing, 2021, 13, 123.	4.0	87
9	Identification of Fusarium head blight in wheat ears using vertical angle-based reflectance spectroscopy. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	6
10	The Effects of Vegetation Type on <i>Oedaleus decorus asiaticus</i> (Orthoptera: Acrididae) Oviposition and Hatching Success. Environmental Entomology, 2021, 50, 790-794.	1.4	3
11	Wheat Fusarium Head Blight Detection Using UAV-Based Spectral and Texture Features in Optimal Window Size. Remote Sensing, 2021, 13, 2437.	4.0	27
12	Monitoring Barley Growth Condition with Multi-scale Remote Sensing Images. , 2021, , .		2
13	Using UAV-Based Hyperspectral Imagery to Detect Winter Wheat Fusarium Head Blight. Remote Sensing, 2021, 13, 3024.	4.0	21
14	Quantitative identification of yellow rust in winter wheat with a new spectral index: Development and validation using simulated and experimental data. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102384.	2.8	8
15	A combination method of stacked autoencoder and 3D deep residual network for hyperspectral image classification. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102459.	2.8	19
16	Detection of Fusarium Head Blight in Wheat Ears Using Continuous Wavelet Analysis and PSO-SVM. Agriculture (Switzerland), 2021, 11, 998.	3.1	22
17	Prediction of Wheat Stripe Rust Occurrence with Time Series Sentinel-2 Images. Agriculture (Switzerland), 2021, 11, 1079.	3.1	16
18	Hybrid Dense Network with Dual Attention for Hyperspectral Image Classification. Remote Sensing, 2021, 13, 4921.	4.0	6

YINGYING DONG

#	Article	IF	CITATIONS
19	Dynamic Remote Sensing Prediction for Wheat Fusarium Head Blight by Combining Host and Habitat Conditions. Remote Sensing, 2020, 12, 3046.	4.0	14
20	Monitoring Wheat Fusarium Head Blight Using Unmanned Aerial Vehicle Hyperspectral Imagery. Remote Sensing, 2020, 12, 3811.	4.0	40
21	Overwintering Distribution of Fall Armyworm (Spodoptera frugiperda) in Yunnan, China, and Influencing Environmental Factors. Insects, 2020, 11, 805.	2.2	21
22	Land use/cover changes in the Oriental migratory locust area of China: Implications for ecological control and monitoring of locust area. Agriculture, Ecosystems and Environment, 2020, 303, 107110.	5.3	27
23	Comparison of identifying land cover tempo-spatial changes using GlobCover and MCD12Q1 global land cover products. Arabian Journal of Geosciences, 2020, 13, 1.	1.3	15
24	Automatic System for Crop Pest and Disease Dynamic Monitoring and Early Forecasting. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 4410-4418.	4.9	35
25	Identification of Remote Sensing-Based Land Cover Types Combining Nearest-Neighbor Classification and SEaTH Algorithm. Journal of the Indian Society of Remote Sensing, 2020, 48, 1007-1020.	2.4	2
26	Migratory Locust Habitat Analysis With PB-AHP Model Using Time-Series Satellite Images. IEEE Access, 2020, 8, 166813-166823.	4.2	13
27	Identification of Wheat Yellow Rust Using Spectral and Texture Features of Hyperspectral Images. Remote Sensing, 2020, 12, 1419.	4.0	66
28	A Disease Index for Efficiently Detecting Wheat Fusarium Head Blight Using Sentinel-2 Multispectral Imagery. IEEE Access, 2020, 8, 52181-52191.	4.2	47
29	Recognition of Banana Fusarium Wilt Based on UAV Remote Sensing. Remote Sensing, 2020, 12, 938.	4.0	73
30	Identification of Fusarium Head Blight in Winter Wheat Ears Using Continuous Wavelet Analysis. Sensors, 2020, 20, 20.	3.8	41
31	Multi-Scale Dilated Convolution Neural Network for Image Artifact Correction of Limited-Angle Tomography. IEEE Access, 2020, 8, 1567-1576.	4.2	6
32	A Deep Learning-Based Approach for Automated Yellow Rust Disease Detection from High-Resolution Hyperspectral UAV Images. Remote Sensing, 2019, 11, 1554.	4.0	168
33	Monitoring and forecasting for disease and pest in crop based on WebGIS system. , 2019, , .		11
34	Integrating Growth and Environmental Parameters to Discriminate Powdery Mildew and Aphid of Winter Wheat Using Bi-Temporal Landsat-8 Imagery. Remote Sensing, 2019, 11, 846.	4.0	32
35	Enhanced Regional Monitoring of Wheat Powdery Mildew Based on an Instance-Based Transfer Learning Method. Remote Sensing, 2019, 11, 298.	4.0	21
36	Ensemble Margin Based Semi-Supervised Random Forest for the Classification of Hyperspectral Image with Limited Training Data. , 2019, , .		9

YINGYING DONG

#	Article	IF	CITATIONS
37	Identification of Wheat Yellow Rust Using Optimal Three-Band Spectral Indices in Different Growth Stages. Sensors, 2019, 19, 35.	3.8	68
38	The influence of landscape's dynamics on the Oriental Migratory Locust habitat change based on the time-series satellite data. Journal of Environmental Management, 2018, 218, 280-290.	7.8	16
39	Remote Estimation of Nitrogen Vertical Distribution by Consideration of Maize Geometry Characteristics. Remote Sensing, 2018, 10, 1995.	4.0	21
40	Integrating Early Growth Information to Monitor Winter Wheat Powdery Mildew Using Multi-Temporal Landsat-8 Imagery. Sensors, 2018, 18, 3290.	3.8	16
41	Wavelet-Based Rust Spectral Feature Set (WRSFs): A Novel Spectral Feature Set Based on Continuous Wavelet Transformation for Tracking Progressive Host–Pathogen Interaction of Yellow Rust on Wheat. Remote Sensing, 2018, 10, 525.	4.0	44
42	Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets. Sensors, 2018, 18, 1901.	3.8	44
43	Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies. Sensors, 2017, 17, 2711.	3.8	22
44	Discriminating Wheat Aphid Damage Degree Using 2-Dimensional Feature Space Derived from Landsat 5 TM. Sensor Letters, 2012, 10, 608-614.	0.4	6
45	Remote sensing retrieval of winter wheat leaf area index and canopy chlorophyll density at different growth stages. Big Earth Data, 0, , 1-23.	4.4	3