Hideya Yuasa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3766955/publications.pdf

Version: 2024-02-01

51 papers	1,448 citations	22 h-index	330143 37 g-index
56	56	56	1467
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	$4\hat{a}\in^2$ -Nitrobiphenyl thioglucoside as the Smallest, fluorescent photosensitizer with cancer targeting ligand. Bioorganic and Medicinal Chemistry, 2022, 61, 116737.	3.0	3
2	Recycling of the major thylakoid lipid MGDG and its role in lipid homeostasis in <i>Chlamydomonas reinhardtii</i> . Plant Physiology, 2021, 187, 1341-1356.	4.8	11
3	Photo effect on the CD1d-binding ability of azobenzene-attached analogues of α-GalCer. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126960.	2.2	9
4	A Twistâ€Assisted Biphenyl Photosensitizer Passable Through Glucose Channel. Chemistry - an Asian Journal, 2019, 14, 2067-2071.	3.3	9
5	Intersystem Crossing Mechanisms in the Room Temperature Phosphorescence of Crystalline Organic Compounds. Bulletin of the Chemical Society of Japan, 2018, 91, 223-229.	3.2	42
6	Water-Soluble Glucosyl Pyrene Photosensitizers: An Intramolecularly Synthesized 2- <i>C</i> -Glucoside and an <i>O</i> -Glucoside. Journal of Organic Chemistry, 2018, 83, 13765-13775.	3.2	16
7	Coating lanthanide nanoparticles with carbohydrate ligands elicits affinity for HeLa and RAW264.7 cells, enhancing their photodamaging effect. Bioorganic and Medicinal Chemistry, 2017, 25, 743-749.	3.0	9
8	Long Persistent Phosphorescence of Crystalline Phenylboronic Acid Derivatives: Photophysics and a Mechanistic Study. ChemPhotoChem, 2017, 1, 102-106.	3.0	62
9	Near-infrared (NIR) up-conversion optogenetics. Scientific Reports, 2015, 5, 16533.	3.3	109
10	The Effect of Coatings on the Affinity of Lanthanide Nanoparticles to MKN45 and HeLa Cancer Cells and Improvement in Photodynamic Therapy Efficiency. International Journal of Molecular Sciences, 2015, 16, 22415-22424.	4.1	14
11	A Ringâ€Flippable Sugar as a Stimuliâ€Responsive Component of Liposomes. Chemistry - an Asian Journal, 2015, 10, 586-594.	3.3	12
12	Visible room-temperature phosphorescence of pure organic crystals via a radical-ion-pair mechanism. Physical Chemistry Chemical Physics, 2015, 17, 15989-15995.	2.8	108
13	Access to a novel near-infrared photodynamic therapy through the combined use of 5-aminolevulinic acid and lanthanide nanoparticles. Photodiagnosis and Photodynamic Therapy, 2013, 10, 607-614.	2.6	18
14	Sugar-attached upconversion lanthanide nanoparticles: A novel tool for high-throughput lectin assay. Bioorganic and Medicinal Chemistry, 2013, 21, 2832-2842.	3.0	9
15	2-Oxabutane as a substitute for internal monomer units of oligosaccharides to create lectin ligands. Organic and Biomolecular Chemistry, 2011, 9, 6579.	2.8	2
16	Synthesis of a novel class of glycocluster with a cyclic \hat{l}_{\pm} -(1 \hat{a}_{\uparrow} '6)-octaglucoside as a scaffold and their binding abilities to concanavalin A. Carbohydrate Research, 2010, 345, 2124-2132.	2.3	8
17	A Novel Galactosyltransferase Inhibitor with Diamino Sugar as a Pyrophosphate Mimic. European Journal of Organic Chemistry, 2009, 2009, 1598-1605.	2.4	5
18	Thiasugars: Potential Glycosidase Inhibitors. Current Topics in Medicinal Chemistry, 2009, 9, 76-86.	2.1	26

#	Article	IF	Citations
19	A novel proton-selective sensor based on a sugar with hinge flexibility. Organic and Biomolecular Chemistry, 2007, 5, 2920.	2.8	18
20	A novel 5-thioglycosylation method with 1,5-dithioglycosyl donors: relevance to exo-versus endocyclic activation. Tetrahedron Letters, 2007, 48, 7953-7956.	1.4	3
21	Pentamer is the minimum structure for oligomannosylpeptoids to bind to concanavalin A. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5274-5278.	2.2	16
22	Exploitation of sugar ring flipping for a hinge-type tether assisting a [2 + 2] cycloaddition. Organic and Biomolecular Chemistry, 2006, 4, 3694.	2.8	12
23	Ring Flip of Carbohydrates: Functions and Applications. Trends in Glycoscience and Glycotechnology, 2006, 18, 353-370.	0.1	7
24	Synthesis and Evaluation of 5-Thio-L-Fucose-Containing Oligosaccharide. Chemistry - A European Journal, 2005, 11, 3032-3038.	3.3	9
25	An Improvement in the Bending Ability of a Hinged Trisaccharide with the Assistance of a SugarSugar Interaction. Chemistry - A European Journal, 2005, 11, 6478-6490.	3.3	11
26	Switching extended 1,3-diequatorial and bent 1,3-diaxial states of a disubstituted hinge sugar by ligand exchange reactions on Pt(ii)Electronic supplementary information (ESI) available: experimental procedures and full characterization of the reported compounds. See http://www.rsc.org/suppdata/cc/b3/b311811h/. Chemical Communications, 2004, , 94.	4.1	12
27	A tong-like fluorescence sensor for metal ions: perfect conformational switch of hinge sugar by pyrene stacking. Organic and Biomolecular Chemistry, 2004, 2, 3548.	2.8	43
28	Hinge Sugar as a Movable Component of an Excimer Fluorescence Sensor. Organic Letters, 2004, 6, 1489-1492.	4.6	136
29	Synthesis of GDP-5-thiosugars and Their Use as Glycosyl Donor Substrates for Glycosyltransferases. Journal of Organic Chemistry, 2003, 68, 6400-6406.	3.2	33
30	Mannoseâ€BSA Conjugates: Comparison Between Commercially Available Linkers in Reactivity and Bioactivity. Journal of Carbohydrate Chemistry, 2003, 22, 317-329.	1.1	27
31	Thiasugars as Potential Glycosidase Inhibitor Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2002, 60, 774-782.	0.1	12
32	Chemical Synthesis of Bioactive Oligosaccharides. Recent Advances in the Development of Unnatural Oligosaccharides. Confornration and Bioactivity Trends in Glycoscience and Glycotechnology, 2001, 13, 31-55.	0.1	29
33	Glycosidase Inhibition by cyclic sulfonium compounds. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1137-1139.	2.2	49
34	Synthesis and Biological Evaluation of α-L-Fucosidase Inhibitors: 5a-Carba-α-L-fucopyranosylamine and Related Compounds. European Journal of Organic Chemistry, 2001, 2001, 967-974.	2.4	24
35	Synthesis and Glycosidase Inhibitory Activity of 5a-Carba-α-DL-fucopyranosylamine and -galactopyranosylamine. European Journal of Organic Chemistry, 2000, 2000, 2089-2093.	2.4	16
36	Synthesis of salacinol. Tetrahedron Letters, 2000, 41, 6615-6618.	1.4	80

#	Article	IF	CITATIONS
37	Synthesis and Ring-Opening Reaction of 1,6-Anhydro-6-deoxy-6-thio-2, 3, 4-tri-O-benzyl-Î ² -D-glucopyranose. Polymer Journal, 2000, 32, 297-299.	2.7	0
38	Creation of a DNA-Binding Oligosaccharide. Trends in Glycoscience and Glycotechnology, 2000, 12, 267-268.	0.1	0
39	Syntheses of two trimannose analogs each containing C-mannosyl or 5-thio-C-mannosyl residue: their affinities to concanavalin A. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 807-810.	2.2	19
40	Bending Trisaccharides by a Chelation-Induced Ring Flip of a Hinge-Like Monosaccharide Unit. Journal of the American Chemical Society, 1999, 121, 5089-5090.	13.7	40
41	Synthesis of 5-Thiomannose-containing oligomannoside mimics: Binding abilities to concanavalin A. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 1297-1300.	2.2	13
42	UDP-N-acetyl-5-thio-galactosamine is a substrate of lactose synthase. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 2523-2526.	2.2	31
43	Relative Nucleophilicity of the Two Sulfur Atoms in 1,5-Dithioglucopyranoside. Angewandte Chemie International Edition in English, 1997, 36, 868-870.	4.4	13
44	Novel conversion of aldopyranosides into 5-thioaldopyranosides via acyclic monothioacetals with inversion and retention of configuration at C-5. Carbohydrate Research, 1996, 282, 207-221.	2.3	25
45	Synthesis of Methyl 5′â€Thioâ€Î±â€isomaltoside via an Acyclic Monothioacetal and its Behavior toward Glucoamylase. Chemistry - A European Journal, 1996, 2, 556-560.	3.3	22
46	Synthesis of iminothiasugar as a potential transition-state analog inhibitor of glycosyltransfer reactions. Tetrahedron Letters, 1994, 35, 8243-8246.	1.4	46
47	Factors influencing stereoselectivity of sulfur oxidation: substituent effects on the oxidation of 5-thioglycopyranose derivatives. Tetrahedron, 1993, 49, 8977-8998.	1.9	23
48	Chemical-enzymic synthesis of 5'-thio-N-acetyllactosamine: the first disaccharide with sulfur in the ring of the non-reducing sugar. Journal of the American Chemical Society, 1992, 114, 5891-5892.	13.7	87
49	New and facile synthetic routes to 5-thioaldohexopyranosides via aldose monothioacetal derivatives. Tetrahedron Letters, 1991, 32, 7087-7090.	1.4	23
50	Synthesis of 5-Thio-L-Fucose and its Inhibitory Effect on Fucosidase. Journal of Carbohydrate Chemistry, 1990, 9, 683-694.	1.1	61
51	Synthesis of 5-Thio-D-Mannose. Journal of Carbohydrate Chemistry, 1989, 8, 753-763.	1.1	36