Ao-Lin Hsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3766951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of Aging and Age-Related Disease by DAF-16 and Heat-Shock Factor. Science, 2003, 300, 1142-1145.	12.6	1,346
2	Rates of Behavior and Aging Specified by Mitochondrial Function During Development. Science, 2002, 298, 2398-2401.	12.6	974
3	Genetic Analysis of Tissue Aging in <i>Caenorhabditis elegans</i> : A Role for Heat-Shock Factor and Bacterial Proliferation. Genetics, 2002, 161, 1101-1112.	2.9	718
4	The Cyclooxygenase-2 Inhibitor Celecoxib Induces Apoptosis by Blocking Akt Activation in Human Prostate Cancer Cells Independently of Bcl-2. Journal of Biological Chemistry, 2000, 275, 11397-11403.	3.4	596
5	New Genes Tied to Endocrine, Metabolic, and Dietary Regulation of Lifespan from a Caenorhabditis elegans Genomic RNAi Screen. PLoS Genetics, 2005, 1, e17.	3.5	467
6	HSF-1 Regulators DDL-1/2 Link Insulin-like Signaling to Heat-Shock Responses and Modulation of Longevity. Cell, 2012, 148, 322-334.	28.9	201
7	Functional Aging in the Nervous System Contributes to Age-Dependent Motor Activity Decline in C.Âelegans. Cell Metabolism, 2013, 18, 392-402.	16.2	117
8	Identification by machine vision of the rate of motor activity decline as a lifespan predictor in C. elegans. Neurobiology of Aging, 2009, 30, 1498-1503.	3.1	92
9	Environmental Temperature Differentially Modulates C.Âelegans Longevity through a Thermosensitive TRP Channel. Cell Reports, 2015, 11, 1414-1424.	6.4	81
10	Phosphoinositide 3-Kinase Facilitates Antigen-stimulated Ca2+ Influx in RBL-2H3 Mast Cells via a Phosphatidylinositol 3,4,5-Trisphosphate-sensitive Ca2+Entry Mechanism. Journal of Biological Chemistry, 2001, 276, 14814-14820.	3.4	79
11	Enhanced Energy Metabolism Contributes to the Extended Life Span of Calorie-restricted Caenorhabditis elegans. Journal of Biological Chemistry, 2012, 287, 31414-31426.	3.4	60
12	C. elegans SIRT6/7 Homolog SIR-2.4 Promotes DAF-16 Relocalization and Function during Stress. PLoS Genetics, 2012, 8, e1002948.	3.5	58
13	Novel Function of Phosphoinositide 3-Kinase in T Cell Ca2+ Signaling. Journal of Biological Chemistry, 2000, 275, 16242-16250.	3.4	54
14	DAFâ€16 stabilizes the aging transcriptome and is activated in midâ€aged <i>Caenorhabditis elegans</i> to cope with internal stress. Aging Cell, 2019, 18, e12896.	6.7	53
15	<i>drrâ€2</i> encodes an elF4H that acts downstream of TOR in dietâ€restrictionâ€induced longevity of <i>C.Âelegans</i> . Aging Cell, 2010, 9, 545-557.	6.7	50
16	Celecoxib extends C.Âelegans lifespan via inhibition of insulin-like signaling but not cyclooxygenase-2 activity. Aging Cell, 2011, 10, 506-519.	6.7	42
17	Integrinâ€linked kinase modulates longevity and thermotolerance in <i>C. elegans</i> through neuronal control of <scp>HSF</scp> â€1. Aging Cell, 2014, 13, 419-430.	6.7	42
18	Co-chaperone p23 Regulates C. elegans Lifespan in Response to Temperature. PLoS Genetics, 2015, 11, e1005023.	3.5	37

Ao-Lin Hsu

#	Article	IF	CITATIONS
19	Reciprocal Changes in Phosphoenolpyruvate Carboxykinase and Pyruvate Kinase with Age Are a Determinant of Aging in Caenorhabditis elegans. Journal of Biological Chemistry, 2016, 291, 1307-1319.	3.4	27
20	Prefoldin 6 mediates longevity response from heat shock factor 1 to FOXO in <i>C. elegans</i> . Genes and Development, 2018, 32, 1562-1575.	5.9	26
21	Monitoring Newly Synthesized Proteins over the Adult Life Span of <i>Caenorhabditis elegans</i> . Journal of Proteome Research, 2015, 14, 1483-1494.	3.7	23
22	AMPKâ€mediated formation of stress granules is required for dietary restrictionâ€induced longevity in <i>Caenorhabditis elegans</i> . Aging Cell, 2020, 19, e13157.	6.7	23
23	Identification of Multiple Phosphoinositide-specific Phospholipases D as New Regulatory Enzymes for Phosphatidylinositol 3,4,5-Trisphosphate. Journal of Biological Chemistry, 1999, 274, 8611-8617.	3.4	22
24	HSB-1 Inhibition and HSF-1 Overexpression Trigger Overlapping Transcriptional Changes To Promote Longevity in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2019, 9, 1679-1692.	1.8	21
25	HSB-1/HSF-1 pathway modulates histone H4 in mitochondria to control mtDNA transcription and longevity. Science Advances, 2020, 6, .	10.3	21
26	Analysis of lifespan-promoting effect of garlic extract by an integrated metabolo-proteomics approach. Journal of Nutritional Biochemistry, 2015, 26, 808-817.	4.2	20
27	Caenorhabditis elegans learning in a structured maze is a multisensory behavior. IScience, 2021, 24, 102284.	4.1	19
28	Genetic and pharmacological interventions in the aging motor nervous system slow motor aging and extend life span in <i>C. elegans</i> . Science Advances, 2019, 5, eaau5041.	10.3	16
29	Molecular Recognition at the Phosphatidylinositol 3,4,5-Trisphosphate-Binding Site. Studies Using the Permuted Isomers of Phosphatidylinositol Trisphosphate. Journal of Organic Chemistry, 1998, 63, 5430-5437.	3.2	13
30	Regulation of Nuclear Calcium Uptake by Inositol Phosphates and External Calcium. Biochemical and Biophysical Research Communications, 1998, 243, 653-656.	2.1	12
31	Solid Plate-based Dietary Restriction in Caenorhabditis elegans . Journal of Visualized Experiments, 2011, , .	0.3	12
32	High-throughput small molecule screening reveals Nrf2-dependent and -independent pathways of cellular stress resistance. Science Advances, 2020, 6, .	10.3	12
33	Using Convolutional Neural Networks to Measure the Physiological Age of <i>Caenorhabditis elegans</i> . IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 2724-2732.	3.0	11
34	A phosphatidylinositol 3,4,5-trisphosphate analogue with low serum protein-binding affinity. Bioorganic and Medicinal Chemistry, 2001, 9, 133-139.	3.0	10
35	Development of a traditional Chinese medicineâ€based agent for the treatment of cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 2073-2087.	7.3	10
36	S-adenosyl methionine synthetase SAMS-5 mediates dietary restriction-induced longevity in Caenorhabditis elegans. PLoS ONE, 2020, 15, e0241455.	2.5	7

Ao-Lin Hsu

#	Article	IF	CITATIONS
37	Short-term enhancement of motor neuron synaptic exocytosis during early aging extends lifespan in <i>Caenorhabditis elegans</i> . Experimental Biology and Medicine, 2020, 245, 1552-1559.	2.4	3
38	SAMS-1 coordinates HLH-30/TFEB and PHA-4/FOXA activities through histone methylation to mediate dietary restriction-induced autophagy and longevity. Autophagy, 2023, 19, 224-240.	9.1	3
39	Approach to the Caenorhabditis Elegans Segmentation from Its Microscopic Image. , 2018, , .		2
40	A maze platform for the assessment of Caenorhabditis elegans behavior and learning. STAR Protocols, 2021, 2, 100829.	1.2	2