Jie Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3766873/publications.pdf

Version: 2024-02-01

110	8,795	51	93
papers	citations	h-index	g-index
110	110	110	8185
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations. Annals of Oncology, 2021, 32, 261-268.	0.6	143
2	Patient-driven discovery and post-clinical validation of NTRK3 fusion as an acquired resistance mechanism to selpercatinib in RET fusion-positive lung cancer. Annals of Oncology, 2021, 32, 817-819.	0.6	27
3	The L730V/I RET roof mutations display different activities toward pralsetinib and selpercatinib. Npj Precision Oncology, 2021, 5, 48.	2.3	30
4	Precision therapy for RET-altered cancers with RET inhibitors. Trends in Cancer, 2021, 7, 1074-1088.	3.8	87
5	RET kinase alterations in targeted cancer therapy. , 2020, 3, 472-481.		7
6	Structural basis of resistance of mutant RET protein-tyrosine kinase to its inhibitors nintedanib and vandetanib. Journal of Biological Chemistry, 2019, 294, 10428-10437.	1.6	43
7	<i>PTPN11</i> Plays Oncogenic Roles and Is a Therapeutic Target for <i>BRAF</i> Wild-Type Melanomas. Molecular Cancer Research, 2019, 17, 583-593.	1.5	34
8	Selective inhibition of leukemia-associated SHP2E69K mutant by the allosteric SHP2 inhibitor SHP099. Leukemia, 2018, 32, 1246-1249.	3.3	54
9	Drug resistance profiles of mutations in the RET kinase domain. British Journal of Pharmacology, 2018, 175, 3504-3515.	2.7	61
10	Expression and alternative splicing of the cyclin-dependent kinase inhibitor-3 gene in human cancer. International Journal of Biochemistry and Cell Biology, 2017, 91, 98-101.	1.2	28
11	Genetic defects of the IRF1-mediated major histocompatibility complex class I antigen presentation pathway occur prevalently in the <i>JAK2</i> gene in non-small cell lung cancer. Oncotarget, 2017, 8, 60975-60986.	0.8	15
12	Preclinical Modeling of KIF5B–RET Fusion Lung Adenocarcinoma. Molecular Cancer Therapeutics, 2016, 15, 2521-2529.	1.9	63
13	Estrogen regulates excitatory amino acid carrier 1 (EAAC1) expression through sphingosine kinase 1 (SphK1) transacting FGFR-mediated ERK signaling in rat C6 astroglial cells. Neuroscience, 2016, 319, 9-22.	1.1	8
14	Abstract 190: Mechanism of CDKN3 over expression in cancer., 2016,,.		0
15	Inhibition of Shp2 suppresses mutant EGFR-induced lung tumors in transgenic mouse model of lung adenocarcinoma. Oncotarget, 2015, 6, 6191-6202.	0.8	39
16	Overexpression of major CDKN3 transcripts is associated with poor survival in lung adenocarcinoma. British Journal of Cancer, 2015, 113, 1735-1743.	2.9	64
17	Evaluating kinase ATP uptake and tyrosine phosphorylation using multiplexed quantification of chemically labeled and post-translationally modified peptides. Methods, 2015, 81, 41-49.	1.9	11
18	Abstract 3697: Development of a focused non-hydrolyzable phosphopeptide library based on a high affinity SHP2 substrate., 2015, , .		O

#	Article	IF	Citations
19	Abstract 2299: Generation and characterization of inducible KIF5B-RET mouse model of non-small cell lung cancer., 2015,,.		O
20	SHP2E76K mutant promotes lung tumorigenesis in transgenic mice. Carcinogenesis, 2014, 35, 1717-1725.	1.3	36
21	Abstract 1560: Loss-of-function JAK1 mutations reveal a new role of protein tyrosine kinase mutations in human cancer. , 2014 , , .		0
22	Abstract 5343: Continuing expression of SHP2E76Kis required to maintain lung tumors induced by the active SHP2E76Kmutant in transgenic mice. , 2014, , .		0
23	Abstract 2518: Development of a non-hydrolysable phosphotyrosine mimetic peptide based on a high affinity SHP2 substrate. , 2014, , .		0
24	GAB2 induces tumor angiogenesis in NRAS-driven melanoma. Oncogene, 2013, 32, 3627-3637.	2.6	25
25	Zuo Jin Wan, a Traditional Chinese Herbal Formula, Reverses P-gp-Mediated MDR <i>In Vitro</i> and <i>In Vivo</i> Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-13.	0.5	32
26	JAK1 truncating mutations in gynecologic cancer define new role of cancer-associated protein tyrosine kinase aberrations. Scientific Reports, 2013, 3, 3042.	1.6	53
27	Hepatitis C Virus Activates Bcl-2 and MMP-2 Expression through Multiple Cellular Signaling Pathways. Journal of Virology, 2012, 86, 12531-12543.	1.5	29
28	Participation of Gab1 and Gab2 in IL-22-mediated keratinocyte proliferation, migration, and differentiation. Molecular and Cellular Biochemistry, 2012, 369, 255-266.	1.4	25
29	Enhanced anti-melanoma efficacy of interferon alfa-2b via inhibition of Shp2. Cancer Letters, 2012, 320, 81-85.	3.2	13
30	Palmadorin chemodiversity from the Antarctic nudibranch Austrodoris kerguelenensis and inhibition of Jak2/STAT5-dependent HEL leukemia cells. Tetrahedron, 2012, 68, 9095-9104.	1.0	46
31	Abstract 2912: Development of potent SHP2 inhibitors forin vivostudies. , 2012, , .		0
32	Abstract 4005: Active SHP2 mutant induces lung hyperproliferative lesions and adenoma in transgenic mice. , 2012, , .		0
33	Mutant proteins as cancer-specific biomarkers. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2444-2449.	3.3	157
34	The coupling of epidermal growth factor receptor down regulation by 1alpha,25-dihydroxyvitamin D3 to the hormone-induced cell cycle arrest at the G1-S checkpoint in ovarian cancer cells. Molecular and Cellular Endocrinology, 2011, 338, 58-67.	1.6	41
35	Erlotinib inhibits progression to dysplasia in a colitis-associated colon cancer model. World Journal of Gastroenterology, 2011, 17, 4858.	1.4	9
36	A Gâ€Quadruplex Aptamer Inhibits the Phosphatase Activity of Oncogenic Protein Shp2 in vitro. ChemBioChem, 2011, 12, 424-430.	1.3	37

#	Article	IF	CITATIONS
37	Shp2 protein tyrosine phosphatase inhibitor activity of estramustine phosphate and its triterpenoid analogs. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 730-733.	1.0	38
38	The Kaposi's Sarcoma-Associated Herpesvirus G Protein-Coupled Receptor Contains an Immunoreceptor Tyrosine-Based Inhibitory Motif That Activates Shp2. Journal of Virology, 2011, 85, 1140-1144.	1.5	10
39	Abstract 3248: New inhibitors of the Shp2 phosphatase. , 2011, , .		0
40	Abstract 3239: Shp2 inhibitor activity of estramustine phosphate and its triterpenoid analogues. , 2011, , .		0
41	Targeting Protein Tyrosine Phosphatases for Anticancer Drug Discovery. Current Pharmaceutical Design, 2010, 16, 1843-1862.	0.9	141
42	Inhibition of cellular Shp2 activity by a methyl ester analog of SPI-112. Biochemical Pharmacology, 2010, 80, 801-810.	2.0	52
43	Association of Shp2 with Phosphorylated IL-22R1 is Required for Interleukin-22-induced MAP Kinase Activation. Journal of Molecular Cell Biology, 2010, 2, 223-230.	1.5	19
44	Critical Role of Shp2 in Tumor Growth Involving Regulation of c-Myc. Genes and Cancer, 2010, 1, 994-1007.	0.6	28
45	Effect of a neurokinin-1 receptor antagonist in a rat model of colitis-associated colon cancer. Anticancer Research, 2010, 30, 3345-53.	0.5	10
46	Inhibitors of Src Homology-2 Domain Containing Protein Tyrosine Phosphatase-2 (Shp2) Based on Oxindole Scaffolds. Journal of Medicinal Chemistry, 2008, 51, 4948-4956.	2.9	83
47	Src Directly Phosphorylates Bif-1 and Prevents Its Interaction with Bax and the Initiation of Anoikis. Journal of Biological Chemistry, 2008, 283, 19112-19118.	1.6	25
48	Hydroxamic Acid Analogue Histone Deacetylase Inhibitors Attenuate Estrogen Receptor- \hat{l}_{\pm} Levels and Transcriptional Activity: A Result of Hyperacetylation and Inhibition of Chaperone Function of Heat Shock Protein 90. Clinical Cancer Research, 2007, 13, 4882-4890.	3.2	138
49	Shp2E76K Mutant Confers Cytokine-independent Survival of TF-1 Myeloid Cells by Up-regulating Bcl-XL. Journal of Biological Chemistry, 2007, 282, 36463-36473.	1.6	15
50	Discovery of a Novel Shp2 Protein Tyrosine Phosphatase Inhibitor. Molecular Pharmacology, 2006, 70, 562-570.	1.0	258
51	Combined effects of novel tyrosine kinase inhibitor AMN107 and histone deacetylase inhibitor LBH589 against Bcr-Abl–expressing human leukemia cells. Blood, 2006, 108, 645-652.	0.6	142
52	Potent Inhibition of Platelet-Derived Growth Factor-Induced Responses in Vascular Smooth Muscle Cells by BMS-354825 (Dasatinib). Molecular Pharmacology, 2006, 69, 1527-1533.	1.0	110
53	Participation of both Gab1 and Gab2 in the activation of the ERK/MAPK pathway by epidermal growth factor. Biochemical Journal, 2005, 391, 143-151.	1.7	68
54	Flow Shear Stress Stimulates Gab1 Tyrosine Phosphorylation to Mediate Protein Kinase B and Endothelial Nitric-oxide Synthase Activation in Endothelial Cells. Journal of Biological Chemistry, 2005, 280, 12305-12309.	1.6	92

#	Article	IF	CITATIONS
55	Loss of Bif-1 Suppresses Bax/Bak Conformational Change and Mitochondrial Apoptosis. Molecular and Cellular Biology, 2005, 25, 9369-9382.	1.1	167
56	Chemical ablation of androgen receptor in prostate cancer cells by the histone deacetylase inhibitor LAQ824. Molecular Cancer Therapeutics, 2005, 4, 1311-1319.	1.9	94
57	Mechanistic role of heat shock protein 70 in Bcr-Abl–mediated resistance to apoptosis in human acute leukemia cells. Blood, 2005, 105, 1246-1255.	0.6	164
58	Roles of Gab1 and SHP2 in Paxillin Tyrosine Dephosphorylation and Src Activation in Response to Epidermal Growth Factor. Journal of Biological Chemistry, 2004, 279, 8497-8505.	1.6	148
59	Role of Gab1 in UV-Induced c-Jun NH 2 -Terminal Kinase Activation and Cell Apoptosis. Molecular and Cellular Biology, 2004, 24, 1531-1539.	1.1	22
60	Noonan syndrome-associated SHP2/PTPN11 mutants cause EGF-dependent prolonged GAB1 binding and sustained ERK2/MAPK1 activation. Human Mutation, 2004, 23, 267-277.	1.1	177
61	Simultaneous suppression of Erk and Akt/PKB activation by a Gab1 pleckstrin homology (PH) domain decoy. Anticancer Research, 2003, 23, 3231-6.	0.5	9
62	Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia-blast crisis cells. Cancer Research, 2003, 63, 5126-35.	0.4	218
63	Arsenic trioxide inhibits translation of mRNA of bcr-abl, resulting in attenuation of Bcr-Abl levels and apoptosis of human leukemia cells. Cancer Research, 2003, 63, 7950-8.	0.4	40
64	Interaction between Tyrosine Kinase Etk and a RUN Domain- and FYVE Domain-containing Protein RUFY1. Journal of Biological Chemistry, 2002, 277, 30219-30226.	1.6	55
65	Regulation of the Mitogen-activated Protein Kinase Signaling Pathway by SHP2. Journal of Biological Chemistry, 2002, 277, 9498-9504.	1.6	142
66	A Role for Grb2-Associated Binder-1 in Growth Hormone Signaling. Endocrinology, 2002, 143, 4856-4867.	1.4	32
67	Regulation of the Erk2-Elk1 signaling pathway and megakaryocytic differentiation of Bcr-Abl+ K562 leukemic cells by Gab2. Blood, 2002, 99, 1388-1397.	0.6	65
68	Inhibition of Bcr–Abl kinase activity by PD180970 blocks constitutive activation of Stat5 and growth of CML cells. Oncogene, 2002, 21, 8804-8816.	2.6	127
69	Trans-regulation of epidermal growth factor receptor by lysophosphatidic acid and G protein-coupled receptors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1582, 100-106.	1.2	36
70	Interleukin-3 protects Bcr-Abl-transformed hematopoietic progenitor cells from apoptosis induced by Bcr-Abl tyrosine kinase inhibitors. Leukemia, 2002, 16, 1589-1595.	3.3	44
71	Phosphotyrosines 627 and 659 of Gab1 Constitute a Bisphosphoryl Tyrosine-based Activation Motif (BTAM) Conferring Binding and Activation of SHP2. Journal of Biological Chemistry, 2001, 276, 24380-24387.	1.6	149
72	Involvement of lipoxygenase in lysophosphatidic acid-stimulated hydrogen peroxide release in human HaCaT keratinocytes. Biochemical Journal, 2000, 346, 751.	1.7	18

#	Article	IF	CITATIONS
73	Involvement of lipoxygenase in lysophosphatidic acid-stimulated hydrogen peroxide release in human HaCaT keratinocytes. Biochemical Journal, 2000, 346, 751-758.	1.7	35
74	Requirement of SHP2 Binding to Grb2-associated Binder-1 for Mitogen-activated Protein Kinase Activation in Response to Lysophosphatidic Acid and Epidermal Growth Factor. Journal of Biological Chemistry, 2000, 275, 13842-13848.	1.6	124
75	Involvement of lipoxygenase in lysophosphatidic acid-stimulated hydrogen peroxide release in human HaCaT keratinocytes. Biochemical Journal, 2000, 346 Pt 3, 751-8.	1.7	13
76	The pyrido[2,3-d]pyrimidine derivative PD180970 inhibits p210Bcr-Abl tyrosine kinase and induces apoptosis of K562 leukemic cells. Cancer Research, 2000, 60, 3127-31.	0.4	114
77	Requirement for Ras/Rac1-Mediated p38 and c-Jun N-Terminal Kinase Signaling in Stat3 Transcriptional Activity Induced by the Src Oncoprotein. Molecular and Cellular Biology, 1999, 19, 7519-7528.	1.1	239
78	Role of a Mitogen-activated Protein Kinase Pathway in the Induction of Phase II Detoxifying Enzymes by Chemicals. Journal of Biological Chemistry, 1999, 274, 27545-27552.	1.6	257
79	Suppression of Fibroblast Cell Cycle Progression in G1 Phase byN-Acetylcysteine. Toxicology and Applied Pharmacology, 1998, 149, 210-216.	1.3	74
80	Characterization of a unique factor-independent variant derived from human factor-dependent TF-1 cells: a transformed event. Leukemia Research, 1998, 22, 817-826.	0.4	20
81	Role of Tyrosine Kinase Activity of Epidermal Growth Factor Receptor in the Lysophosphatidic Acid-stimulated Mitogen-activated Protein Kinase Pathway. Journal of Biological Chemistry, 1998, 273, 14468-14475.	1.6	141
82	Reversible regulation of SHP-1 tyrosine phosphatase activity by oxidation. IUBMB Life, 1998, 45, 887-894.	1.5	21
83	The role of type I and type II tumor necrosis factor (TNF) receptors in the ability of TNF-alpha to transduce a proliferative signal in the human megakaryoblastic leukemic cell line Mo7e. Cancer Research, 1998, 58, 2217-23.	0.4	23
84	Divergence in Signal Transduction Pathways of Platelet-derived Growth Factor (PDGF) and Epidermal Growth Factor (EGF) Receptors. Journal of Biological Chemistry, 1997, 272, 10777-10783.	1.6	108
85	Activation of extracellular signal-regulated kinase (ERK) by mitogenic stimuli is repressed in v-Src-transformed cells. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 1997, 8, 113-9.	0.8	11
86	Participation of Reactive Oxygen Species in the Lysophosphatidic Acid-stimulated Mitogen-activated Protein Kinase Kinase Activation Pathway. Journal of Biological Chemistry, 1995, 270, 28499-28502.	1.6	166
87	Sphingosine 1-Phosphate Rapidly Activates the Mitogen-activated Protein Kinase Pathway by a G Protein-dependent Mechanism. Journal of Biological Chemistry, 1995, 270, 11484-11488.	1.6	177
88	Rapid deactivation of MAP kinase in PC12 cells occurs independently of induction of phosphatase MKP-1. FEBS Letters, 1994, 353, 9-12.	1.3	56
89	Identifying Substrate Motifs of Protein Kinases by a Random Library Approach. Biochemistry, 1994, 33, 14825-14833.	1.2	113
90	Expression, purification and characterization of recombinant mitogen-activated protein kinase kinases. Biochemical Journal, 1994, 303, 105-112.	1.7	33

#	Article	IF	Citations
91	Functional expression of a MAP kinase kinase in COS cells and recognition by an anti-STE7/byrl antibody. FEBS Letters, 1993, 317, 12-16.	1.3	15
92	Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3',5'-monophosphate. Science, 1993, 262, 1065-1069.	6.0	945
93	ldentification and characterization of a new mammalian mitogen-activated protein kinase kinase, MKK2 Molecular and Cellular Biology, 1993, 13, 4539-4548.	1.1	162
94	Activation of the mitogen-activated protein kinase pathway in Triton X-100 disrupted NIH-3T3 cells by p21 ras and in vitro by plasma membranes from NIH 3T3 cells Molecular Biology of the Cell, 1993, 4, 483-493.	0.9	28
95	Molecular structure of a protein-tyrosine/threonine kinase activating p42 mitogen-activated protein (MAP) kinase: MAP kinase kinase Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 173-177.	3.3	179
96	Identification and Characterization of a New Mammalian Mitogen-Activated Protein Kinase Kinase, MKK2. Molecular and Cellular Biology, 1993, 13, 4539-4548.	1.1	55
97	c-Myb and v-Myb are differentially phosphorylated by p42mapk in vitro. Oncogene, 1993, 8, 2259-65.	2.6	34
98	Activation of MAP kinase by a dual specificity Tyr/Thr kinase. Advances in Second Messenger and Phosphoprotein Research, 1993, 28, 219-25.	4.5	1
99	The phorbol ester-dependent activator of the mitogen-activated protein kinase p42mapk is a kinase with specificity for the threonine and tyrosine regulatory sites Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 5221-5225.	3.3	113
100	Renaturation and partial peptide sequencing of mitogen-activated protein kinase (MAP kinase) activator from rabbit skeletal muscle. Biochemical Journal, 1992, 285, 701-705.	1.7	64
101	Apparent sufficiency of a dual-specificity tyrosine/threonine kinase for activation of MAP kinase poses new questions for the dual-phosphorylation mechanism. Biochemical Society Transactions, 1992, 20, 675-677.	1.6	2
102	Identification of Tyr-185 as the site of tyrosine autophosphorylation of recombinant mitogen-activated protein kinase p42mapk Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 5779-5783.	3.3	56
103	Growth factor-induced activation of a kinase activity which causes regulatory phosphorylation of p42/microtubule-associated protein kinase Molecular and Cellular Biology, 1992, 12, 2222-2229.	1.1	76
104	Ordered phosphorylation of p42mapkby MAP kinase kinase. FEBS Letters, 1992, 306, 17-22.	1.3	143
105	MAP kinase activator from insulin-stimulated skeletal muscle is a protein threonine/tyrosine kinase EMBO Journal, 1992, 11, 2123-2129.	3.5	243
106	Growth Factor-Induced Activation of a Kinase Activity Which Causes Regulatory Phosphorylation of p42/Microtubule-Associated Protein Kinase. Molecular and Cellular Biology, 1992, 12, 2222-2229.	1.1	35
107	MAP kinase activator from insulin-stimulated skeletal muscle is a protein threonine/tyrosine kinase. EMBO Journal, 1992, 11, 2123-9.	3.5	83
108	Recent progress in characterization of protein kinase cascades for phosphorylation of ribosomal protein S6. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1092, 350-357.	1.9	436

#	Article	lF	CITATIONS
109	Sequence of pp42/MAP kinase, a serine/threonine kinase regulated by tyrosine phosphorylation. Nucleic Acids Research, 1991, 19, 3743-3743.	6.5	98
110	Autophosphorylation in vitro of recombinant 42-kilodalton mitogen-activated protein kinase on tyrosine Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 9508-9512.	3.3	149