Svetlana Alexeeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3766782/publications.pdf

Version: 2024-02-01

22 papers 1,599 citations

16 h-index 752698 20 g-index

22 all docs 22 docs citations

22 times ranked 1854 citing authors

#	Article	IF	CITATIONS
1	The Steady-State Internal Redox State (NADH/NAD) Reflects the External Redox State and Is Correlated with Catabolic Adaptation in <i>Escherichia coli</i> i>Iournal of Bacteriology, 1999, 181, 2351-2357.	2.2	300
2	Requirement of ArcA for Redox Regulation in <i>Escherichia coli</i> under Microaerobic but Not Anaerobic or Aerobic Conditions. Journal of Bacteriology, 2003, 185, 204-209.	2.2	166
3	The ArcBA Two-Component System of <i>Escherichia coli</i> Is Regulated by the Redox State of both the Ubiquinone and the Menaquinone Pool. Journal of Bacteriology, 2010, 192, 746-754.	2.2	148
4	Effects of Limited Aeration and of the ArcAB System on Intermediary Pyruvate Catabolism in Escherichia coli. Journal of Bacteriology, 2000, 182, 4934-4940.	2.2	132
5	The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli. Microbiology (United Kingdom), 2011, 157, 251-259.	1.8	103
6	Colocalization and interaction between elongasome and divisome during a preparative cell division phase in <i><scp>E</scp>scherichia coli</i> . Molecular Microbiology, 2013, 87, 1074-1087.	2.5	103
7	Functional implications of the microbial community structure of undefined mesophilic starter cultures. Microbial Cell Factories, 2014, 13, S2.	4.0	93
8	Direct interactions of early and late assembling division proteins in <i>Escherichia coli</i> cells resolved by FRET. Molecular Microbiology, 2010, 77, 384-398.	2.5	92
9	Quantitative Assessment of Oxygen Availability: Perceived Aerobiosis and Its Effect on Flux Distribution in the Respiratory Chain of <i>Escherichia coli</i> Journal of Bacteriology, 2002, 184, 1402-1406.	2.2	87
10	DNA and origin region segregation are not affected by the transition from rod to sphere after inhibition of Escherichia coli MreB by A22. Molecular Microbiology, 2007, 65, 51-63.	2.5	78
11	MPP5 Recruits MPP4 to the CRB1 Complex in Photoreceptors. , 2005, 46, 2192.		62
12	Use of Thymine Limitation and Thymine Starvation To Study Bacterial Physiology and Cytology. Journal of Bacteriology, 2006, 188, 1667-1679.	2.2	43
13	Spontaneously induced prophages are abundant in a naturally evolved bacterial starter culture and deliver competitive advantage to the host. BMC Microbiology, 2018, 18, 120.	3.3	42
14	MPP3 is recruited to the MPP5 protein scaffold at the retinal outer limiting membrane. FEBS Journal, 2006, 273, 1152-1165.	4.7	31
15	Differential Bacterial Surface Display of Peptides by the Transmembrane Domain of OmpA. PLoS ONE, 2009, 4, e6739.	2.5	30
16	Characterization of Escherichia coli nucleoids released by osmotic shock. Journal of Structural Biology, 2012, 178, 260-269.	2.8	26
17	Tiny but mighty: bacterial membrane vesicles in food biotechnological applications. Current Opinion in Biotechnology, 2018, 49, 179-184.	6.6	20
18	Extracellular vesicle formation in <i>Lactococcus lactis</i> is stimulated by prophageâ€encoded holin–lysin system. Microbial Biotechnology, 2022, 15, 1281-1295.	4.2	17

#	Article	IF	CITATIONS
19	Chronic Release of Tailless Phage Particles from Lactococcus lactis. Applied and Environmental Microbiology, 2022, 88, AEM0148321.	3.1	13
20	Genomics of tailless bacteriophages in a complex lactic acid bacteria starter culture. International Dairy Journal, 2021, 114, 104900.	3.0	6
21	Detection of Protein Interactions in the Cytoplasm and Periplasm of Escherichia coli by Förster Resonance Energy Transfer. Bio-protocol, 2018, 8, e2697.	0.4	6
22	DNA and origin region segregation are not affected by the transition from rod to sphere after inhibition of <i>Escherichia coli</i> /i> MreB by A22. Molecular Microbiology, 2007, 65, 839-839.	2.5	1