
Alexei I Kononov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/376672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silver Cluster Interactions with Tyrosine: Towards Amino Acid Detection. International Journal of Molecular Sciences, 2022, 23, 634.	4.1	7
2	Electronically Excited States in Model Complexes of Noble Metal Clusters with Carbon Nanodots. Russian Physics Journal, 2022, 64, 2076-2081.	0.4	2
3	Silver cluster interactions with Pterin: Complex structure, binding energies and spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 279, 121467.	3.9	5
4	Structure and Formation of Luminescent Centers in Light-Up Ag Cluster-Based DNA Probes. Journal of Physical Chemistry C, 2021, 125, 3542-3552.	3.1	11
5	Electronically excited states in model complexes of clusters of precious metals with carbon nanodots. Izvestiya Vysshikh Uchebnykh Zavedenii, Gornyi Zhurnal, 2021, , 84-89.	0.0	0
6	Comparative study of gold and silver interactions with amino acids and nucleobases. RSC Advances, 2020, 10, 34149-34160.	3.6	33
7	Combined Quantum-Classical Simulation of Photoinduced Electronic Density Redistribution from Biopolymer Segments to Photochromic Probes. Russian Physics Journal, 2020, 63, 1386-1394.	0.4	0
8	Fluorescent Ag-Nanoclusters for Evaluation of Serum Albumin and Immunoglobulin Content in Protein Mixtures. Journal of Physics: Conference Series, 2020, 1695, 012061.	0.4	0
9	Revealing a possible sensor mechanism of DNA - based silver nanoclusters. Journal of Physics: Conference Series, 2020, 1695, 012058.	0.4	0
10	Formation of luminescent nanoclusters by etching silver nanoparticles with biomolecules. Journal of Physics: Conference Series, 2020, 1695, 012196.	0.4	0
11	tRNA as a stabilizing matrix for fluorescent silver clusters: photophysical properties and IR study. Nanoscale Advances, 2019, 1, 3579-3583.	4.6	1
12	Exciton Absorption and Luminescence in i-Motif DNA. Scientific Reports, 2019, 9, 15988.	3.3	6
13	Predicting absorption spectra of silverâ€ligand complexes. International Journal of Quantum Chemistry, 2019, 119, e25995.	2.0	5
14	Silver cluster–amino acid interactions: a quantum-chemical study. Amino Acids, 2019, 51, 855-864.	2.7	25
15	Luminescent silver nanoclusters for probing immunoglobulins and serum albumins in protein mixtures. Analytical Methods, 2019, 11, 6153-6158.	2.7	6
16	Theoretical study of photoreactions between oxidized pterins and molecular oxygen. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 372, 254-259.	3.9	11
17	Calculation of absorption spectra of silver-thiolate complexes. Computer Research and Modeling, 2019, 11, 275-286.	0.3	1
18	DNA as UV light–harvesting antenna. Nucleic Acids Research, 2018, 46, 3543-3551.	14.5	30

Alexei Ι Κονονον

#	Article	IF	CITATIONS
19	Ultrafast fluorescence dynamics of DNA-based silver clusters. Physical Chemistry Chemical Physics, 2018, 20, 28205-28210.	2.8	9
20	Fluorescent Silver Clusters on Protein Templates: Understanding Their Structure. Journal of Physical Chemistry C, 2018, 122, 29549-29558.	3.1	19
21	Which Amino Acids are Capable of Nucleating Fluorescent Silver Clusters in Proteins?. Journal of Physical Chemistry C, 2018, 122, 26275-26280.	3.1	13
22	Triplet state generation by furocoumarins revisited: a combined QSPR/DFT approach. New Journal of Chemistry, 2018, 42, 14424-14432.	2.8	6
23	Excitation spectra of Ag3–DNA bases complexes: A benchmark study. Chemical Physics Letters, 2017, 673, 11-18.	2.6	15
24	DNA with Ionic, Atomic, and Clustered Silver: An XPS Study. Journal of Physical Chemistry B, 2017, 121, 2400-2406.	2.6	50
25	Albumin-stabilized fluorescent silver nanodots. Journal of Molecular Structure, 2017, 1140, 19-21.	3.6	6
26	Structure of fluorescent metal clusters on a DNA template Journal of Physics: Conference Series, 2016, 741, 012069.	0.4	0
27	Ag–DNA Emitter: Metal Nanorod or Supramolecular Complex?. Journal of Physical Chemistry Letters, 2016, 7, 3560-3566.	4.6	48
28	Luminescence Switching of a Gold–Copper Supramolecular Complex: A Physical Insight. Journal of Physical Chemistry C, 2016, 120, 25541-25547.	3.1	7
29	Electronic excitation energy transport in a DNA-Ag cluster complex. Journal of Physics: Conference Series, 2016, 741, 012051.	0.4	0
30	Fluorescence saturation spectroscopy in probing electronically excited states of silver nanoclusters. Journal of Luminescence, 2016, 172, 175-179.	3.1	13
31	Noncanonical Stacking Geometries of Nucleobases as a Preferred Target for Solar Radiation. Journal of the American Chemical Society, 2015, 137, 11656-11665.	13.7	13
32	Orientational order in poly-N-vinylpyrrolidone films. Journal of Optical Technology (A Translation of) Tj ETQq0 0 () rgBT /Ov 0.4	erlock 10 Tf 5
33	Heterogeneity of Threadlike Shape of DNA-Stabilized Silver Fluorescent Clusters. Biophysical Journal, 2014, 106, 806a.	0.5	0
34	DNA-Stabilized Silver Nanoclusters with High Yield of Dark State Probed by Fluorescence Saturation Spectroscopy. Biophysical Journal, 2014, 106, 216a-217a.	0.5	0
35	Flow birefringence and optical anisotropy of poly(N-vinylpyrrolidone) molecules. Polymer Science - Series A, 2013, 55, 213-217.	1.0	2
			-

36DNA-Stabilized Silver Nanoclusters with High Yield of Dark State. Journal of Physical Chemistry C,
2013, 117, 24079-24083.3.131

Alexei | Κονονον

#	Article	IF	CITATIONS
37	Fluorescent Silver Nanoclusters in Condensed DNA. ChemPhysChem, 2013, 14, 3543-3550.	2.1	16
38	Excitation Spectra Argue for Threadlike Shape of DNA-Stabilized Silver Fluorescent Clusters. Journal of Physical Chemistry C, 2013, 117, 18681-18687.	3.1	54
39	Optical properties and orientational order of deoxyribonucleic acid molecules at interfaces. Polymer Science - Series A, 2010, 52, 49-54.	1.0	1
40	Effect of the molecular architecture of side radicals on the optical properties of comb-shaped polymers. Polymer Science - Series C, 2010, 52, 79-82.	1.7	3
41	Molecular structure of thin layers of pentameric polyorganocyclosiloxane. Polymer Science - Series A, 2009, 51, 531-536.	1.0	0
42	Self-organization and self-association of pentameric polyorganocyclosiloxane molecules at the interface: A study by the inclined polarized beam method. Doklady Physical Chemistry, 2008, 421, 179-181.	0.9	0
43	Stochastic Resonance to Control Diffusive Motion in Chemistry. Journal of Physical Chemistry B, 2005, 109, 1318-1328.	2.6	12
44	Controlled assembly of covalent and supramolecular chemical modules: from engineering of complex structures to high-performance chromatography. Russian Chemical Bulletin, 2004, 53, 1379-1384.	1.5	0
45	Photophysical Processes in the Complexes of DNA with Ethidium Bromide and Acridine Orange:Â A Femtosecond Study. Journal of Physical Chemistry B, 2001, 105, 535-541.	2.6	67
46	Red-shifted fluorescence from polyguanylic acid in aqueous solution at room temperature. Journal of Photochemistry and Photobiology B: Biology, 1996, 34, 211-216.	3.8	5
47	Exciton effects in dinucleotides and polynucleotides. Journal of Photochemistry and Photobiology B: Biology, 1993, 19, 139-144.	3.8	20