List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3766398/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Volatile composition of Baga red wine. Analytica Chimica Acta, 2004, 513, 257-262.	5.4	180
2	Effect of thermal blanching and of high pressure treatments on sweet green and red bell pepper fruits (Capsicum annuum L.). Food Chemistry, 2008, 107, 1436-1449.	8.2	177
3	Solvent and concentration effects on the properties of electrospun poly(ethylene terephthalate) nanofiber mats. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 460-471.	2.1	168
4	Thermophysical Properties of Five Acetate-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2012, 57, 3005-3013.	1.9	143
5	Characterisation of phenolic extracts from olive pulp and olive pomace by electrospray mass spectrometry. Journal of the Science of Food and Agriculture, 2005, 85, 21-32.	3.5	134
6	Composition of Phenolic Compounds in a Portuguese Pear (Pyrus communisL. Var. S. Bartolomeu) and Changes after Sun-Drying. Journal of Agricultural and Food Chemistry, 2002, 50, 4537-4544.	5.2	131
7	Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chemistry, 2011, 13, 3173.	9.0	124
8	Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocolloids, 2013, 33, 199-206.	10.7	122
9	Characterization of chitosan–whey protein films at acid pH. Food Research International, 2009, 42, 807-813.	6.2	115
10	Microorganisms under high pressure — Adaptation, growth and biotechnological potential. Biotechnology Advances, 2013, 31, 1426-1434.	11.7	111
11	Evaluation of antimicrobial edible coatings from a whey protein isolate base to improve the shelf life of cheese. Journal of Dairy Science, 2012, 95, 6282-6292.	3.4	110
12	Chitosan–caffeic acid–genipin films presenting enhanced antioxidant activity and stability in acidic media. Carbohydrate Polymers, 2013, 91, 236-243.	10.2	103
13	Temperature dependence of the formation and melting of pectin–Ca2+ networks: a rheological study. Food Hydrocolloids, 2003, 17, 801-807.	10.7	101
14	Thermophysical properties of sulfonium- and ammonium-based ionic liquids. Fluid Phase Equilibria, 2014, 381, 36-45.	2.5	94
15	Surface tension and refractive index of pure and water-saturated tetradecyltrihexylphosphonium-based ionic liquids. Journal of Chemical Thermodynamics, 2013, 57, 372-379.	2.0	92
16	Application of electrospun poly(ethylene terephthalate) nanofiber mat to apple juice clarification. Process Biochemistry, 2009, 44, 353-356.	3.7	90
17	Studies on a purification method for locust bean gum by precipitation with isopropanol. Food Hydrocolloids, 1990, 4, 277-287.	10.7	87
18	Kinetics and thermal behaviour of the structure formation process in HMP/sucrose gelation. International Journal of Biological Macromolecules, 1995, 17, 25-32.	7.5	87

#	Article	IF	CITATIONS
19	Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan scaffolds for skin regeneration. International Journal of Biological Macromolecules, 2012, 51, 343-350.	7.5	85
20	Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cues. Scientific Reports, 2016, 6, 21563.	3.3	85
21	Microbiological and rheological studies on Portuguese kefir grains. International Journal of Food Science and Technology, 1996, 31, 15-26.	2.7	84
22	Dynamic rheological analysis of the gelation behaviour of waxy crude oils. Rheologica Acta, 2004, 43, 433-441.	2.4	84
23	Tailoring structure and technological properties of plant proteins using high hydrostatic pressure. Critical Reviews in Food Science and Nutrition, 2018, 58, 1538-1556.	10.3	81
24	Innovative non-thermal technologies affecting potato tuber and fried potato quality. Trends in Food Science and Technology, 2019, 88, 274-289.	15.1	81
25	Determination of the degree of methylesterification of pectic polysaccharides by FT-IR using an outer product PLS1 regression. Carbohydrate Polymers, 2002, 50, 85-94.	10.2	79
26	High pressure solubility data of carbon dioxide in (tri-iso-butyl(methyl)phosphonium tosylate+water) systems. Journal of Chemical Thermodynamics, 2008, 40, 1187-1192.	2.0	78
27	Calcium-mediated gelation of an olive pomace pectic extract. Carbohydrate Polymers, 2003, 52, 125-133.	10.2	77
28	Contact angles and wettability of ionic liquids on polar and non-polar surfaces. Physical Chemistry Chemical Physics, 2015, 17, 31653-31661.	2.8	77
29	TiO2/graphene oxide immobilized in P(VDF-TrFE) electrospun membranes with enhanced visible-light-induced photocatalytic performance. Journal of Materials Science, 2016, 51, 6974-6986.	3.7	76
30	Swelling behavior of pectin/chitosan complex films. Journal of Applied Polymer Science, 1996, 60, 279-283.	2.6	75
31	Cation Alkyl Side Chain Length and Symmetry Effects on the Surface Tension of Ionic Liquids. Langmuir, 2014, 30, 6408-6418.	3.5	75
32	Rheology of galactomannan–whey protein mixed systems. International Dairy Journal, 2003, 13, 699-706.	3.0	71
33	Influence of temperature on the dynamic and steady-shear rheology of pectin dispersions. Carbohydrate Polymers, 1994, 23, 77-87.	10.2	70
34	Rheological study into the ageing process of high methoxyl pectin/sucrose aqueous gels. Carbohydrate Polymers, 1994, 24, 235-245.	10.2	69
35	Isolation and Analysis of Cell Wall Polymers from Olive Pulp. Modern Methods of Plant Analysis, 1996, , 19-44.	0.1	68
36	Thermophysical properties of phosphonium-based ionic liquids. Fluid Phase Equilibria, 2015, 400, 103-113.	2.5	67

#	Article	IF	CITATIONS
37	Gelling and emulsifying properties of soy protein hydrolysates in the presence of a neutral polysaccharide. Food Chemistry, 2019, 294, 216-223.	8.2	67
38	Fermentation at non-conventional conditions in food- and bio-sciences by the application of advanced processing technologies. Critical Reviews in Biotechnology, 2018, 38, 122-140.	9.0	66
39	Analysis of the Isothermal Structure Development in Waxy Crude Oils under Quiescent Conditions. Energy & Fuels, 2007, 21, 3612-3617.	5.1	64
40	Influence of the anion on the surface tension of 1-ethyl-3-methylimidazolium-based ionic liquids. Journal of Chemical Thermodynamics, 2012, 54, 49-54.	2.0	62
41	Surface Tension of Binary Mixtures of 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids: Experimental Measurements and Soft-SAFT Modeling. Journal of Physical Chemistry B, 2012, 116, 12133-12141.	2.6	61
42	Rheological Properties of High-Methoxyl Pectin and Locust Bean Gum Solutions in Steady Shear. Journal of Food Science, 1992, 57, 443-448.	3.1	57
43	Chitosan–genipin film, a sustainable methodology for wine preservation. Green Chemistry, 2016, 18, 5331-5341.	9.0	56
44	Foreign Body Reaction Associated with PET and PET/Chitosan Electrospun Nanofibrous Abdominal Meshes. PLoS ONE, 2014, 9, e95293.	2.5	53
45	Hyperbaric storage of melon juice at and above room temperature and comparison with storage at atmospheric pressure and refrigeration. Food Chemistry, 2014, 147, 209-214.	8.2	52
46	Surface tensions of binary mixtures of ionic liquids with bis(trifluoromethylsulfonyl)imide as the common anion. Journal of Chemical Thermodynamics, 2013, 64, 22-27.	2.0	49
47	Evidence for the Aging of Wax Deposits in Crude Oils by Ostwald Ripening. Petroleum Science and Technology, 2003, 21, 381-391.	1.5	46
48	Does the branching degree of galactomannans influence their effect on whey protein gelation?. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 270-271, 213-219.	4.7	46
49	ATRâ€FTIR spectroscopy and chemometric analysis applied to discrimination of landrace maize flours produced in southern Brazil. International Journal of Food Science and Technology, 2010, 45, 1673-1681.	2.7	46
50	Microbial and physicochemical evolution during hyperbaric storage at room temperature of fresh Atlantic salmon (Salmo salar). Innovative Food Science and Emerging Technologies, 2018, 45, 264-272.	5.6	46
51	Effect of the molecular weight of a neutral polysaccharide on soy protein gelation. Food Research International, 2017, 102, 14-24.	6.2	44
52	Lipidic Protic Ionic Liquid Crystals. ACS Sustainable Chemistry and Engineering, 2014, 2, 672-682.	6.7	43
53	Food Preservation Under Pressure (Hyperbaric Storage) as a Possible Improvement/Alternative to Refrigeration. Food Engineering Reviews, 2015, 7, 1-10.	5.9	42
54	Acetylation and molecular mass effects on barrier and mechanical properties of shortfin squid chitosan membranes. European Polymer Journal, 2006, 42, 3277-3285.	5.4	41

#	Article	IF	CITATIONS
55	Influence of Nanosegregation on the Surface Tension of Fluorinated Ionic Liquids. Langmuir, 2016, 32, 6130-6139.	3.5	38
56	Fruit and vegetable by-products' flours as ingredients: A review on production process, health benefits and technological functionalities. LWT - Food Science and Technology, 2022, 154, 112707.	5.2	38
57	Rheological and Nuclear Magnetic Resonance (NMR) Study of the Hydration and Heating of Undeveloped Wheat Doughs. Journal of Agricultural and Food Chemistry, 2007, 55, 5636-5644.	5.2	37
58	Effects of magnetite nanoparticles on the thermorheological properties of carrageenan hydrogels. Journal of Colloid and Interface Science, 2008, 324, 205-211.	9.4	37
59	Catalytic activity of trypsin entrapped in electrospun poly(ϵ-caprolactone) nanofibers. Enzyme and Microbial Technology, 2015, 79-80, 8-18.	3.2	37
60	Fluorination effects on the thermodynamic, thermophysical and surface properties of ionic liquids. Journal of Chemical Thermodynamics, 2016, 97, 354-361.	2.0	37
61	Impact of different hyperbaric storage conditions on microbial, physicochemical and enzymatic parameters of watermelon juice. Food Research International, 2017, 99, 123-132.	6.2	37
62	Effect of Processing on Cell Wall Polysaccharides of Green Table Olives. Journal of Agricultural and Food Chemistry, 1996, 44, 2394-2401.	5.2	36
63	Selection and Optimization of Culture Medium for Exopolysaccharide Production by Coriolus (Trametes) Versicolor. World Journal of Microbiology and Biotechnology, 2005, 21, 1499-1507.	3.6	34
64	Preparation and Characterization of Electrospun Mats Made of PET/Chitosan Hybrid Nanofibers. Journal of Nanoscience and Nanotechnology, 2009, 9, 3798-3804.	0.9	34
65	The effect of n vs. iso isomerization on the thermophysical properties of aromatic and non-aromatic ionic liquids. Fluid Phase Equilibria, 2016, 423, 190-202.	2.5	34
66	Effect of composition of commercial whey protein preparations upon gelation at various pH values. Food Research International, 2012, 48, 681-689.	6.2	31
67	Probiotic yogurt production under high pressure and the possible use of pressure as an on/off switch to stop/start fermentation. Process Biochemistry, 2015, 50, 906-911.	3.7	31
68	Physicochemical parameters, lipids stability, and volatiles profile of vacuum-packaged fresh Atlantic salmon (Salmo salar) loins preserved by hyperbaric storage at 10â€Â°C. Food Research International, 2020, 127, 108740.	6.2	31
69	Structural analysis of gellans produced by Sphingomonas elodea strains by electrospray tandem mass spectrometry. Carbohydrate Polymers, 2009, 77, 10-19.	10.2	30
70	A first study comparing preservation of a readyâ€ŧoâ€eat soup under pressure (hyperbaric storage) at 25°C and 30°C with refrigeration. Food Science and Nutrition, 2015, 3, 467-474.	3.4	30
71	The influence of galactomannans with different amount of galactose side chains on the gelation of soy proteins at neutral pH. Food Hydrocolloids, 2013, 33, 349-360.	10.7	29
72	Manipulation of chemical composition and architecture of non-biodegradable poly(ethylene) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 67 T 29

and Engineering C, 2013, 33, 37-46.

#	Article	IF	CITATIONS
73	High pressure treatments largely avoid/revert decrease of cooked sorghum protein digestibility when applied before/after cooking. LWT - Food Science and Technology, 2011, 44, 1245-1249.	5.2	28
74	Influence of a cationic polysaccharide on starch functionality. Carbohydrate Polymers, 2016, 150, 369-377.	10.2	28
75	Quality of Fresh Atlantic Salmon (Salmo salar) Under Hyperbaric Storage at Low Temperature by Evaluation of Microbial and Physicochemical Quality Indicators. Food and Bioprocess Technology, 2019, 12, 1895-1906.	4.7	28
76	Physicochemical and microbial changes in yogurts produced under different pressure and temperature conditions. LWT - Food Science and Technology, 2019, 99, 423-430.	5.2	27
77	Influence of Galactomannans with Different Molecular Weights on the Gelation of Whey Proteins at Neutral pH. Biomacromolecules, 2005, 6, 3291-3299.	5.4	26
78	Effect of sun-drying on microstructure and texture of S. Bartolomeu pears (Pyrus communis L.). European Food Research and Technology, 2008, 226, 1545-1552.	3.3	26
79	Rheological behavior of thermoreversible κ-carrageenan/nanosilica gels. Journal of Colloid and Interface Science, 2008, 320, 575-581.	9.4	26
80	Tailoring the surface properties and flexibility of starch-based films using oil and waxes recovered from potato chips byproducts. International Journal of Biological Macromolecules, 2020, 163, 251-259.	7.5	26
81	Effect of galactomannans on the viscoelastic behaviour of pectin/calcium networks. Polymer Gels and Networks, 1996, 4, 65-83.	0.6	25
82	Processing conditions and characterization of novel electrospun poly (3-hydroxybutyrate-co-hydroxyvalerate)/chitosan blend fibers. Materials Letters, 2011, 65, 2216-2219.	2.6	25
83	Identification of oleuropein oligomers in olive pulp and pomace. Journal of the Science of Food and Agriculture, 2006, 86, 1495-1502.	3.5	24
84	Surface tensions of ionic liquids: Non-regular trend along the number of cyano groups. Fluid Phase Equilibria, 2016, 409, 458-465.	2.5	24
85	Effect of the Methylation and N–H Acidic Group on the Physicochemical Properties of Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry B, 2015, 119, 8781-8792.	2.6	23
86	Ripening-related changes in the cell walls of olive (Olea europaea L.) pulp of two consecutive harvests. Journal of the Science of Food and Agriculture, 2006, 86, 988-998.	3.5	22
87	Hyperbaric storage preservation at room temperature using an industrial-scale equipment: Case of two commercial ready-to-eat pre-cooked foods. Innovative Food Science and Emerging Technologies, 2015, 32, 29-36.	5.6	22
88	Enhanced control of Bacillus subtilis endospores development by hyperbaric storage at variable/uncontrolled room temperature compared to refrigeration. Food Microbiology, 2018, 74, 125-131.	4.2	21
89	Effects of ripening on microstructure and texture of "Ameixa d'Elvas―candied plums. Food Chemistry, 2009, 115, 1094-1101.	8.2	20
90	Improvement of the refrigerated preservation technology by hyperbaric storage for raw fresh meat. Journal of the Science of Food and Agriculture, 2020, 100, 969-977.	3.5	20

JOSé LOPES DA SILVA

#	Article	IF	CITATIONS
91	Immobilization of trypsin onto poly(ethylene terephthalate)/poly(lactic acid) nonwoven nanofiber mats. Biochemical Engineering Journal, 2015, 104, 48-56.	3.6	19
92	Performance of raw bovine meat preservation by hyperbaric storage (quasi energetically costless) compared to refrigeration. Meat Science, 2016, 121, 64-72.	5.5	19
93	Rheological Behavior of Food Gels. Food Engineering Series, 2007, , 339-401.	0.7	19
94	Effect of Gelatinization and Starchâ^'Emulsifier Interactions on Aroma Release from Starch-Rich Model Systems. Journal of Agricultural and Food Chemistry, 2002, 50, 1976-1984.	5.2	18
95	Characterization of Requeijão and technological optimization of its manufacturing process. Journal of Food Engineering, 1996, 30, 363-376.	5.2	17
96	Effect of candying on microstructure and texture of plums (Prunus domestica L.). LWT - Food Science and Technology, 2008, 41, 1776-1783.	5.2	17
97	Growth inhibition and inactivation of Alicyclobacillus acidoterrestris endospores in apple juice by hyperbaric storage at ambient temperature. Innovative Food Science and Emerging Technologies, 2019, 52, 232-236.	5.6	17
98	Hyperbaric storage at room like temperatures as a possible alternative to refrigeration: evolution and recent advances. Critical Reviews in Food Science and Nutrition, 2021, 61, 2078-2089.	10.3	17
99	Weak-gel formation in dispersions of silica particles in a matrix of a non-ionic polysaccharide: Structure and rheological characterization. Carbohydrate Polymers, 2010, 82, 1219-1227.	10.2	16
100	Preparation and Characterization of Chitosan/SiO ₂ Composite Films. Journal of Nanoscience and Nanotechnology, 2010, 10, 2816-2825.	0.9	16
101	Hyperbaric storage at variable room temperature – a new preservation methodology for minced meat compared to refrigeration. Journal of the Science of Food and Agriculture, 2019, 99, 3276-3282.	3.5	16
102	Enhanced preservation of vacuum-packaged Atlantic salmon by hyperbaric storage at room temperature versus refrigeration. Scientific Reports, 2021, 11, 1668.	3.3	16
103	Critical evaluation of the functionality of soy protein isolates obtained from different raw materials. European Food Research and Technology, 2019, 245, 199-212.	3.3	15
104	Small strain viscoelastic behaviour of wheat gluten – pentosan mixtures. European Food Research and Technology, 2005, 221, 398-405.	3.3	14
105	Olive Pomace, a Source for Valuable Arabinan-Rich Pectic Polysaccharides. Topics in Current Chemistry, 2010, 294, 129-141.	4.0	14
106	Autolytic changes involving proteolytic enzymes on Atlantic salmon (Salmo salar) preserved by hyperbaric storage. LWT - Food Science and Technology, 2020, 118, 108755.	5.2	14
107	Physicochemical Changes of Air-Dried and Salt-Processed Ulva rigida over Storage Time. Molecules, 2019, 24, 2955.	3.8	13
108	A microbiological, physicochemical, and texture study during storage of yoghurt produced under isostatic pressure. LWT - Food Science and Technology, 2019, 110, 152-157.	5.2	13

#	Article	IF	CITATIONS
109	Preservation of raw watermelon juice up to one year by hyperbaric storage at room temperature. LWT - Food Science and Technology, 2020, 117, 108695.	5.2	12
110	Relevance of genipin networking on rheological, physical, and mechanical properties of starch-based formulations. Carbohydrate Polymers, 2021, 254, 117236.	10.2	12
111	Pressure dependent luminescence in titanium dioxide particles modified with europium ions. Sensors and Actuators B: Chemical, 2016, 234, 137-144.	7.8	10
112	Impact of pH on the high-pressure inactivation of microbial transglutaminase. Food Research International, 2019, 115, 73-82.	6.2	10
113	Potential nutritional and functional improvement of extruded breakfast cereals based on incorporation of fruit and vegetable by-products - A review. Trends in Food Science and Technology, 2022, 125, 136-153.	15.1	10
114	A Rheological Study of Wheat Starch-Water-soluble Pentosan Mixtures Under Hydrothermal Gelling Conditions. Journal of Food Science, 2002, 67, 3372-3380.	3.1	9
115	Changes in maize starch water sorption isotherms caused by high pressure. International Journal of Food Science and Technology, 2014, 49, 51-57.	2.7	9
116	Hyperbaric Storage of Vacuum-Packaged Fresh Atlantic Salmon (Salmo salar) Loins by Evaluation of Spoilage Microbiota and Inoculated Surrogate-Pathogenic Microorganisms. Food Engineering Reviews, 2021, 13, 651-659.	5.9	9
117	Linear viscoelastic behavior of chitosan films as influenced by changes in the biopolymer structure. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1907-1915.	2.1	8
118	Cofilin-1 Is a Mechanosensitive Regulator of Transcription. Frontiers in Cell and Developmental Biology, 2020, 8, 678.	3.7	8
119	Quality evolution of raw meat under hyperbaric storage – Fatty acids, volatile organic compounds and lipid oxidation profiles. Food Bioscience, 2021, 42, 101108.	4.4	8
120	Preservation of high pressure pasteurised milk by hyperbaric storage at room temperature versus refrigeration on inoculated microorganisms, fatty acids, volatile compounds and lipid oxidation. Food Chemistry, 2022, 387, 132887.	8.2	8
121	Nutritional, Physicochemical, and Endogenous Enzyme Assessment of Raw Milk Preserved under Hyperbaric Storage at Variable Room Temperature. ACS Food Science & Technology, 2022, 2, 961-974.	2.7	8
122	Rheological characterization under shear of a fraction of polymer produced via fermentation of whey-related media by Rahnella aquatilis1Most material reported in this paper was presented in poster form at GLUPORTwO-Second International Meeting of the Portuguese Carbohydrate Chemistry Group, and such communication received the Best Poster Award 1. Carbohydrate Polymers, 1998, 37, 1-6	10.2	7
123	NMR metabolic composition profiling of high pressure pasteurized milk preserved by hyperbaric storage at room temperature. Food Control, 2022, 134, 108660.	5.5	7
124	Physical and mass transfer properties of electrospun É›-polycaprolactone nanofiber membranes. Process Biochemistry, 2015, 50, 885-892.	3.7	6
125	Characterization of the physicochemical and thermal properties of unexplored starches with potential industrial uses from six Brazilian maize landraces. Starch/Staerke, 2013, 65, 938-946.	2.1	5
126	Effect of high pressure on cod (Gadus morhua) desalting. High Pressure Research, 2013, 33, 432-439.	1.2	5

#	Article	IF	CITATIONS
127	Effect of 300 and 500â€MPa pressure treatments on starch–water adsorption/desorption isotherms and hysteresis. High Pressure Research, 2014, 34, 452-459.	1.2	4
128	Hyperbaric Storage Effect on Enzyme Activity and Texture Characteristics of Raw Meat. Food Engineering Reviews, 2021, 13, 642-650.	5.9	4
129	Thermorheological complex behaviour of maltosyl-chitosan derivatives in aqueous solution. Reactive and Functional Polymers, 2012, 72, 657-666.	4.1	3
130	Nonthermal gelation of whey proteins induced by organic acids. Journal of Applied Polymer Science, 2017, 134, 45134.	2.6	3
131	The Combined Effect of Pressure and Temperature on Kefir Production—A Case Study of Food Fermentation in Unconventional Conditions. Foods, 2020, 9, 1133.	4.3	3
132	Role of Rheological Behavior in Sensory Assessment of Foods and Swallowing. Food Engineering Series, 2007, , 403-426.	0.7	3
133	Influence of wheat polysaccharides on the rheological properties of gluten and doughs. Special Publication - Royal Society of Chemistry, 0, , 503-506.	0.0	2
134	Swelling behavior of pectin/chitosan complex films. , 1996, 60, 279.		1