Yoshinori Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3766212/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Molecular BioSystems, 2005, 1, 176.	2.9	318
2	Cu-Doped ZnS Hollow Particle with High Activity for Hydrogen Generation from Alkaline Sulfide Solution under Visible Light. Chemistry of Materials, 2008, 20, 1997-2000.	6.7	168
3	Apatite formation on carbon nanotubes. Materials Science and Engineering C, 2006, 26, 675-678.	7.3	115
4	Structure–property relationships in thermally-annealed multi-walled carbon nanotubes. Carbon, 2014, 66, 219-226.	10.3	74
5	Super-Robust, Lightweight, Conducting Carbon Nanotube Blocks Cross-Linked by De-fluorination. ACS Nano, 2008, 2, 348-356.	14.6	46
6	Long-term biopersistence of tangled oxidized carbon nanotubes inside and outside macrophages in rat subcutaneous tissue. Scientific Reports, 2013, 3, 2516.	3.3	43
7	Novel Method to Evaluate the Carbon Network of Single-Walled Carbon Nanotubes by Hydrogen Physisorption. Journal of Physical Chemistry C, 2007, 111, 14937-14941.	3.1	41
8	Single-walled carbon nanotube-derived novel structural material. Journal of Materials Research, 2006, 21, 1537-1542.	2.6	35
9	In Vitro and In Vivo Evaluation of a Three-Dimensional Porous Multi-Walled Carbon Nanotube Scaffold for Bone Regeneration. Nanomaterials, 2017, 7, 46.	4.1	35
10	Work function, carrier type, and conductivity of nitrogen-doped single-walled carbon nanotube catalysts prepared by annealing via defluorination and efficient oxygen reduction reaction. Carbon, 2019, 142, 518-527.	10.3	28
11	Relation of the Number of Cross-Links and Mechanical Properties of Multi-Walled Carbon Nanotube Films Formed by a Dehydration Condensation Reaction. Journal of Physical Chemistry B, 2006, 110, 23159-23163.	2.6	23
12	Efficiency and long-term durability of a nitrogen-doped single-walled carbon nanotube electrocatalyst synthesized by defluorination-assisted nanotube-substitution for oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 9184-9195.	10.3	21
13	A three-dimensional block structure consisting exclusively of carbon nanotubes serving as bone regeneration scaffold and as bone defect filler. PLoS ONE, 2017, 12, e0172601.	2.5	21
14	Structural and Electrochemical Characterization of Ethylenediaminated Single-Walled Carbon Nanotubes Prepared from Fluorinated SWCNTs. Journal of Physical Chemistry C, 2014, 118, 14948-14956.	3.1	19
15	Highly Crystalline Single-Walled Carbon Nanotube Field Emitters: Energy-Loss-Free High Current Output and Long Durability with High Power. ACS Applied Electronic Materials, 2019, 1, 163-171.	4.3	17
16	Defluorination-assisted nanotube-substitution reaction with ammonia gas for synthesis of nitrogen-doped single-walled carbon nanotubes. Carbon, 2015, 94, 1052-1060.	10.3	16
17	Preparation of Single-Walled Carbon Nanotube Solids and Their Mechanical Properties. Journal of Materials Research, 2005, 20, 2609-2612.	2.6	13
18	Electrochemical capacitors using nitrogen-doped vertically aligned multi-walled carbon nanotube electrodes prepared by defluorination. Carbon, 2018, 132, 539-547.	10.3	13

Yoshinori Sato

#	Article	IF	CITATIONS
19	Asymmetric and symmetric absorption peaks observed in infrared spectra of CO2 adsorbed on TiO2 nanotubes. Journal of Chemical Physics, 2016, 144, 154703.	3.0	10
20	Characterization of Silver Nanoparticleâ€decorated Singleâ€walled Carbon Nanotube Films. Fullerenes Nanotubes and Carbon Nanostructures, 2009, 17, 587-599.	2.1	8
21	In Situ Electrochemical Raman Spectroscopy of Air-Oxidized Semiconducting Single-Walled Carbon Nanotube Bundles in Aqueous Sulfuric Acid Solution. Journal of Physical Chemistry C, 2016, 120, 7133-7143.	3.1	8
22	Functionalization of primary amine groups to single-walled carbon nanotubes by reacting fluorinated SWCNTs with ammonia gas at a low temperature. Carbon, 2021, 172, 360-371.	10.3	7
23	Internal distribution of micro-/nano-sized ceramics and metals particles in mice. Journal of the Ceramic Society of Japan, 2010, 118, 525-529.	1.1	5
24	Is the tensile strength of carbon nanotubes enhanced by supported materials?: Effect of supported amorphous alumina nanoparticles on the tensile strength of carbon nanotubes. Carbon, 2017, 118, 339-342.	10.3	5
25	Pt-Pd Nanoalloy for the Unprecedented Activation of Carbon-Fluorine Bond at Low Temperature. Bulletin of the Chemical Society of Japan, 2020, 93, 1180-1185.	3.2	5
26	Slippage-inhibiting effect of interfacial cross-linking of nanotubes by defluorination on the mechanical properties of free-standing multi-walled carbon nanotube yarns: Comparison with individual multi-walled carbon nanotubes. Carbon, 2021, 179, 1-12.	10.3	5
27	Boron-Assisted Transformation to Rod-Like Graphitic Carbons from Multi-Walled Carbon Nanotubes in Boron-Mixed Multi-Walled Carbon Nanotube Solids. ACS Applied Materials & Interfaces, 2011, 3, 2431-2439.	8.0	4
28	Effects of Polycarbosilane Addition on the Mechanical Properties of Single-Walled Carbon Nanotube Solids. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2005, 48, 189-193.	0.4	3
29	The Purity and Thermal Stability in Air of Metalâ€Encapsulating Carbon Nanocapsules (MECNCs). Fullerenes Nanotubes and Carbon Nanostructures, 2007, 15, 303-309.	2.1	3
30	Influence of supported PtPd nanoparticles on the tensile strength of individual multi-walled carbon nanotubes: strength decrease by the interaction of metal and nanotube. RSC Advances, 2017, 7, 49917-49922.	3.6	3
31	Evaluation of Mechanical Properties of Single-Walled Carbon Nanotube Solids Prepared by Spark Plasma Sintering. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2005, 52, 826-830.	0.2	1
32	Mechanical Properties of Single-Walled Carbon Nanotube Solids Prepared by Spark Plasma Sintering. Journal of Solid Mechanics and Materials Engineering, 2007, 1, 854-863.	0.5	0
33	Small and Shaping the Future Energy Eco-house System. , 2010, , .		0
34	216 Mechanical Properties of Single-Walled Carbon Nanotube Solids Prepared by Spark Plasm Sintering. The Proceedings of Conference of Tohoku Branch, 2004, 2004.39, 76-77.	0.0	0
35	212 Preparation of Single-Walled Carbon Nanotube Solids and Their Mechanical Properties. The Proceedings of Conference of Tohoku Branch, 2005, 2005.40, 74-75.	0.0	0
36	Carbon Nanotube-Bio Interface. Hyomen Kagaku, 2009, 30, 202-206.	0.0	0

#	Article	IF	CITATIONS
37	Oxygen reduction reaction catalytic activity of carbon nanotubes in aqueous acid solutions. Tanso, 2020, 2020, 185-193.	0.1	0