Hector Herrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3766074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Orchid-Associated Bacteria and Their Plant Growth Promotion Capabilities. Reference Series in Phytochemistry, 2022, , 175-200.	0.4	4
2	Root-associated endophytes isolated from juvenile Ulex europaeus L. (Fabaceae) plants colonizing rural areas in South-Central Chile. Plant and Soil, 2022, 474, 181-193.	3.7	10
3	Proteomic Profiling and Rhizosphere-Associated Microbial Communities Reveal Adaptive Mechanisms of Dioclea apurensis Kunth in Eastern Amazon's Rehabilitating Minelands. Plants, 2022, 11, 712.	3.5	7
4	Tree Cover Species Modify the Diversity of Rhizosphere-Associated Microorganisms in Nothofagus obliqua (Mirb.) Oerst Temperate Forests in South-Central Chile. Forests, 2022, 13, 756.	2.1	5
5	Metal(loid)-resistant bacterial consortia with antimycotic properties increase tolerance of Chenopodium quinoa Wild. to metal(loid) stress. Rhizosphere, 2022, 23, 100569.	3.0	4
6	Controlled mycorrhization of the endemic Chilean orchid Chloraea gavilu (Orchidaceae). Plant Biosystems, 2021, 155, 848-855.	1.6	2
7	Orchid-Associated Bacteria and Their Plant Growth Promotion Capabilities. Reference Series in Phytochemistry, 2021, , 1-26.	0.4	0
8	Inoculation of Triticum Aestivum L. (Poaceae) with Plant-Growth-Promoting Fungi Alleviates Plant Oxidative Stress and Enhances Phenanthrene Dissipation in Soil. Agronomy, 2021, 11, 411.	3.0	9
9	Genome Sequence of Brevundimonas sp., an Arsenic Resistant Soil Bacterium. Diversity, 2021, 13, 344.	1.7	9
10	Non-Specific Interactions of Rhizospheric Microbial Communities Support the Establishment of Mimosa acutistipula var. ferrea in an Amazon Rehabilitating Mineland. Processes, 2021, 9, 2079.	2.8	12
11	Mycorrhizal Fungi Isolated from Native Terrestrial Orchids from Region of La AraucanÃa, Southern Chile. Microorganisms, 2020, 8, 1120.	3.6	11
12	Isolation and Identification of Endophytic Bacteria from Mycorrhizal Tissues of Terrestrial Orchids from Southern Chile. Diversity, 2020, 12, 55.	1.7	26
13	Fungal and Bacterial Microbiome Associated with the Rhizosphere of Native Plants from the Atacama Desert. Microorganisms, 2020, 8, 209.	3.6	39
14	Isolation and identification of plant growth-promoting bacteria from rhizomes of Arachnitis uniflora, a fully mycoheterotrophic plant in southern Chile. Applied Soil Ecology, 2020, 149, 103512.	4.3	17
15	Enhanced Arsenic Tolerance in Triticum aestivum Inoculated with Arsenic-Resistant and Plant Growth Promoter Microorganisms from a Heavy Metal-Polluted Soil. Microorganisms, 2019, 7, 348.	3.6	40
16	Orchid Mycorrhizal Interactions on the Pacific Side of the Andes from Chile. A Review. Journal of Soil Science and Plant Nutrition, 2019, 19, 187-202.	3.4	23
17	Improving Soil Simazine Dissipation Through an Organic Amendment Inoculated with Trametes versicolor. Journal of Soil Science and Plant Nutrition, 2019, 19, 262-269.	3.4	8
18	The Endophytic Fungus Chaetomium cupreum Regulates Expression of Genes Involved in the Tolerance to Metals and Plant Growth Promotion in Eucalyptus globulus Roots. Microorganisms, 2019. 7. 490.	3.6	28

HECTOR HERRERA

#	Article	IF	CITATIONS
19	Root-Associated Fungal Communities in Two Populations of the Fully Mycoheterotrophic Plant Arachnitis uniflora Phil. (Corsiaceae) in Southern Chile. Microorganisms, 2019, 7, 586.	3.6	12
20	Dual inoculation with mycorrhizal and saprotrophic fungi suppress the maize growth and development under phenanthrene exposure. Journal of Soil Science and Plant Nutrition, 2018, , 0-0.	3.4	6
21	Adaptation and tolerance mechanisms developed by mycorrhizal Bipinnula fimbriata plantlets (Orchidaceae) in a heavy metal-polluted ecosystem. Mycorrhiza, 2018, 28, 651-663.	2.8	33
22	Mycorrhizal compatibility and symbiotic seed germination of orchids from the Coastal Range and Andes in south central Chile. Mycorrhiza, 2017, 27, 175-188.	2.8	54