George A O'toole

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3765562/publications.pdf

Version: 2024-02-01

١			10986	6300
	175	31,835	71	158
	papers	citations	h-index	g-index
	187	187	187	25933
	all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	The Diguanylate Cyclase YfiN of Pseudomonas aeruginosa Regulates Biofilm Maintenance in Response to Peroxide. Journal of Bacteriology, 2022, 204, JB0039621.	2.2	8
2	2021 Jack Kenney Award for Outstanding Service. Journal of Bacteriology, 2022, 204, e0052321.	2.2	1
3	Broadcasting of amplitude- and frequency-modulated c-di-GMP signals facilitates cooperative surface commitment in bacterial lineages. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	4
4	Force-Induced Changes of PilY1 Drive Surface Sensing by Pseudomonas aeruginosa. MBio, 2022, 13, e0375421.	4.1	15
5	Rapid expansion and extinction of antibiotic resistance mutations during treatment of acute bacterial respiratory infections. Nature Communications, 2022, 13, 1231.	12.8	22
6	Biofilm Maintenance as an Active Process: Evidence that Biofilms Work Hard to Stay Put. Journal of Bacteriology, 2022, 204, e0058721.	2.2	13
7	Nonmotile Subpopulations of <i>Pseudomonas aeruginosa</i> Repress Flagellar Motility in Motile Cells through a Type IV Pilus- and Pel-Dependent Mechanism. Journal of Bacteriology, 2022, 204, e0052821.	2.2	5
8	Structural basis for environmental sensing in <i>Pseudomonas fluorescens</i> . FASEB Journal, 2022, 36, .	0.5	0
9	Roberto Kolter and Many Images of Microbiology. Journal of Bacteriology, 2022, , e0015322.	2.2	O
10	Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Physical Biology, 2021, 18, 051501.	1.8	46
11	<i>Pseudomonas aeruginosa</i> Uses c-di-GMP Phosphodiesterases RmcA and MorA To Regulate Biofilm Maintenance. MBio, 2021, 12, .	4.1	25
12	Metabolic Modeling to Interrogate Microbial Disease: A Tale for Experimentalists. Frontiers in Molecular Biosciences, 2021, 8, 634479.	3 . 5	7
13	One versus Many: Polymicrobial Communities and the Cystic Fibrosis Airway. MBio, 2021, 12, .	4.1	11
14	Interaction between the type 4 pili machinery and a diguanylate cyclase fine-tune c-di-GMP levels during early biofilm formation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
15	Architecture of cell–cell junctions in situ reveals a mechanism for bacterial biofilm inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	22
16	Mild Cystic Fibrosis Lung Disease Is Associated with Bacterial Community Stability. Microbiology Spectrum, 2021, 9, e0002921.	3.0	10
17	Differential Surface Competition and Biofilm Invasion Strategies of Pseudomonas aeruginosa PA14 and PAO1. Journal of Bacteriology, 2021, 203, e0026521.	2.2	7
18	Model Systems to Study the Chronic, Polymicrobial Infections in Cystic Fibrosis: Current Approaches and Exploring Future Directions. MBio, 2021, 12, e0176321.	4.1	26

#	Article	IF	Citations
19	The Gut-Lung Axis in Cystic Fibrosis. Journal of Bacteriology, 2021, 203, e0031121.	2.2	44
20	Gross transcriptomic analysis of Pseudomonas putida for diagnosing environmental shifts. Microbial Biotechnology, 2020, 13, 263-273.	4.2	7
21	Pseudomonas aeruginosa PA14 Enhances the Efficacy of Norfloxacin against Staphylococcus aureus Newman Biofilms. Journal of Bacteriology, 2020, 202, .	2.2	20
22	From Input to Output: The Lap/c-di-GMP Biofilm Regulatory Circuit. Annual Review of Microbiology, 2020, 74, 607-631.	7.3	39
23	Lung function and microbiota diversity in cystic fibrosis. Microbiome, 2020, 8, 45.	11.1	138
24	MapA, a Second Large RTX Adhesin Conserved across the Pseudomonads, Contributes to Biofilm Formation by Pseudomonas fluorescens. Journal of Bacteriology, 2020, 202, .	2.2	18
25	Availability of Zinc Impacts Interactions between Streptococcus sanguinis and Pseudomonas aeruginosa in Coculture. Journal of Bacteriology, 2020, 202, .	2.2	12
26	Social Cooperativity of Bacteria during Reversible Surface Attachment in Young Biofilms: a Quantitative Comparison of Pseudomonas aeruginosa PA14 and PAO1. MBio, 2020, 11, .	4.1	47
27	Exogenous Alginate Protects Staphylococcus aureus from Killing by Pseudomonas aeruginosa. Journal of Bacteriology, 2020, 202, .	2.2	42
28	Age and environmental exposures influence the fecal bacteriome of young children with cystic fibrosis. Pediatric Pulmonology, 2020, 55, 1661-1670.	2.0	22
29	Pseudomonas aeruginosa Increases the Sensitivity of Biofilm-Grown Staphylococcus aureus to Membrane-Targeting Antiseptics and Antibiotics. MBio, 2019, 10, .	4.1	63
30	Altered Stool Microbiota of Infants with Cystic Fibrosis Shows a Reduction in Genera Associated with Immune Programming from Birth. Journal of Bacteriology, 2019, 201, .	2.2	60
31	Lying in Wait: Modeling the Control of Bacterial Infections via Antibiotic-Induced Proviruses. MSystems, 2019, 4, .	3.8	5
32	"lt Takes a Village― Mechanisms Underlying Antimicrobial Recalcitrance of Polymicrobial Biofilms. Journal of Bacteriology, 2019, 202, .	2.2	107
33	Glycocluster Tetrahydroxamic Acids Exhibiting Unprecedented Inhibition of <i>Pseudomonas aeruginosa</i> Biofilms. Journal of Medicinal Chemistry, 2019, 62, 7722-7738.	6.4	17
34	Special Meeting Issue for the 8th ASM Conference on Biofilms. Journal of Bacteriology, 2019, 201, .	2.2	0
35	Pseudomonas aeruginosa Can Inhibit Growth of Streptococcal Species via Siderophore Production. Journal of Bacteriology, 2019, 201, .	2.2	15
36	Bordetella bronchiseptica Diguanylate Cyclase BdcA Regulates Motility and Is Important for the Establishment of Respiratory Infection in Mice. Journal of Bacteriology, 2019, 201, .	2.2	6

#	Article	IF	Citations
37	Ethanol Decreases Pseudomonas aeruginosa Flagellar Motility through the Regulation of Flagellar Stators. Journal of Bacteriology, 2019, 201, .	2.2	25
38	Metabolic Modeling of Cystic Fibrosis Airway Communities Predicts Mechanisms of Pathogen Dominance. MSystems, 2019, 4, .	3.8	30
39	The Yin and Yang of <i>Streptococcus</i> Lung Infections in Cystic Fibrosis: a Model for Studying Polymicrobial Interactions. Journal of Bacteriology, 2019, 201, .	2.2	24
40	Flagellar Stators Stimulate c-di-GMP Production by Pseudomonas aeruginosa. Journal of Bacteriology, $2019, 201, \ldots$	2.2	52
41	Interspecies interactions induce exploratory motility in Pseudomonas aeruginosa. ELife, 2019, 8, .	6.0	56
42	An N-Terminal Retention Module Anchors the Giant Adhesin LapA of Pseudomonas fluorescens at the Cell Surface: a Novel Subfamily of Type I Secretion Systems. Journal of Bacteriology, 2018, 200, .	2.2	44
43	A Multimodal Strategy Used by a Large c-di-GMP Network. Journal of Bacteriology, 2018, 200, .	2.2	52
44	Multigenerational memory and adaptive adhesion in early bacterial biofilm communities. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4471-4476.	7.1	132
45	Cystic Fibrosis Airway Microbiome: Overturning the Old, Opening the Way for the New. Journal of Bacteriology, 2018, 200, .	2.2	49
46	Co-opting the Lap System of <i>Pseudomonas fluorescens</i> To Reversibly Customize Bacterial Cell Surfaces. ACS Synthetic Biology, 2018, 7, 2612-2617.	3.8	8
47	Ligand-Mediated Biofilm Formation via Enhanced Physical Interaction between a Diguanylate Cyclase and Its Receptor. MBio, 2018, 9, .	4.1	36
48	Special Sections for the 6th ASM Conference on Cell-Cell Communication in Bacteria. Journal of Bacteriology, 2018, 200, .	2.2	0
49	Type 1 Does the Two-Step: Type 1 Secretion Substrates with a Functional Periplasmic Intermediate. Journal of Bacteriology, 2018, 200, .	2.2	44
50	Role of Cyclic Di-GMP and Exopolysaccharide in Type IV Pilus Dynamics. Journal of Bacteriology, 2017, 199, .	2.2	32
51	Bacteria, Rev Your Engines: Stator Dynamics Regulate Flagellar Motility. Journal of Bacteriology, 2017, 199, .	2.2	42
52	<i>Pseudomonas aeruginosa</i> Alginate Overproduction Promotes Coexistence with <i>Staphylococcus aureus</i> in a Model of Cystic Fibrosis Respiratory Infection. MBio, 2017, 8, .	4.1	124
53	Special Meeting Sections for the 6th ASM Conference on Beneficial Microbes. Journal of Bacteriology, 2017, 199, .	2.2	0
54	Special Meeting Sections for the ASM Conference on Mechanisms of Interbacterial Cooperation and Competition. Journal of Bacteriology, 2017, 199, .	2.2	0

#	Article	IF	CITATIONS
55	High-Speed "4D―Computational Microscopy of Bacterial Surface Motility. ACS Nano, 2017, 11, 9340-9351.	14.6	23
56	An Antipersister Strategy for Treatment of Chronic Pseudomonas aeruginosa Infections. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	32
57	<i>Pseudomonas aeruginosa</i> Alters <i>Staphylococcus aureus</i> Sensitivity to Vancomycin in a Biofilm Model of Cystic Fibrosis Infection. MBio, 2017, 8, .	4.1	136
58	A Symphony of Cyclases: Specificity in Diguanylate Cyclase Signaling. Annual Review of Microbiology, 2017, 71, 179-195.	7.3	82
59	Cyanide Toxicity to Burkholderia cenocepacia Is Modulated by Polymicrobial Communities and Environmental Factors. Frontiers in Microbiology, 2016, 7, 725.	3.5	37
60	Classic Spotlight: Plate Counting You Can Count On. Journal of Bacteriology, 2016, 198, 3127-3127.	2.2	13
61	The Inhibitory Site of a Diguanylate Cyclase Is a Necessary Element for Interaction and Signaling with an Effector Protein. Journal of Bacteriology, 2016, 198, 1595-1603.	2.2	44
62	Classic Spotlight: Cyclic Di-GMP, the Molecule That Makes the Bacterial World Stop Going ′Round. Journal of Bacteriology, 2016, 198, 1553-1553.	2.2	0
63	PilZ Domain Protein FlgZ Mediates Cyclic Di-GMP-Dependent Swarming Motility Control in Pseudomonas aeruginosa. Journal of Bacteriology, 2016, 198, 1837-1846.	2.2	96
64	Requirements for Pseudomonas aeruginosa Type I-F CRISPR-Cas Adaptation Determined Using a Biofilm Enrichment Assay. Journal of Bacteriology, 2016, 198, 3080-3090.	2.2	19
65	Special Meeting Sections for the 7th ASM Conference on Biofilms. Journal of Bacteriology, 2016, 198, 2551-2551.	2.2	O
66	Classic Spotlight: Bacteroides thetaiotaomicron, Starch Utilization, and the Birth of the Microbiome Era. Journal of Bacteriology, 2016, 198, 2763-2763.	2.2	3
67	Classic Spotlight: How the Gram Stain Works. Journal of Bacteriology, 2016, 198, 3128-3128.	2.2	18
68	Classic Spotlight: Quorum Sensing and the Multicellular Life of Unicellular Organisms. Journal of Bacteriology, 2016, 198, 601-601.	2.2	6
69	Special Meeting Sections. Journal of Bacteriology, 2016, 198, i.	2.2	O
70	Classic Spotlight: Before They Were Biofilms. Journal of Bacteriology, 2016, 198, 5-5.	2.2	3
71	Friendly Fire: Biological Functions and Consequences of Chromosomal Targeting by CRISPR-Cas Systems. Journal of Bacteriology, 2016, 198, 1481-1486.	2.2	31
72	Sensational biofilms: surface sensing in bacteria. Current Opinion in Microbiology, 2016, 30, 139-146.	5.1	159

#	Article	IF	CITATIONS
73	Tobramycin-Treated Pseudomonas aeruginosa PA14 Enhances Streptococcus constellatus 7155 Biofilm Formation in a Cystic Fibrosis Model System. Journal of Bacteriology, 2016, 198, 237-247.	2.2	29
74	Cyclic Di-GMP-Regulated Periplasmic Proteolysis of a Pseudomonas aeruginosa Type Vb Secretion System Substrate. Journal of Bacteriology, 2016, 198, 66-76.	2.2	44
75	Contribution of Physical Interactions to Signaling Specificity between a Diguanylate Cyclase and Its Effector. MBio, 2015, 6, e01978-15.	4.1	65
76	c-di-GMP and its Effects on Biofilm Formation and Dispersion: a <i>Pseudomonas Aeruginosa</i> Review. Microbiology Spectrum, 2015, 3, MB-0003-2014.	3.0	252
77	A Hierarchical Cascade of Second Messengers Regulates Pseudomonas aeruginosa Surface Behaviors. MBio, 2015, 6, .	4.1	182
78	Cystic Fibrosis Lung Infections: Polymicrobial, Complex, and Hard to Treat. PLoS Pathogens, 2015, 11, e1005258.	4.7	165
79	Cyclic Di-GMP-Mediated Repression of Swarming Motility by Pseudomonas aeruginosa PA14 Requires the MotAB Stator. Journal of Bacteriology, 2015, 197, 420-430.	2.2	101
80	Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes. MBio, 2015, 6, e00129-15.	4.1	48
81	Coculture of Staphylococcus aureus with Pseudomonas aeruginosa Drives S. aureus towards Fermentative Metabolism and Reduced Viability in a Cystic Fibrosis Model. Journal of Bacteriology, 2015, 197, 2252-2264.	2.2	272
82	Associations between Gut Microbial Colonization in Early Life and Respiratory Outcomes in Cystic Fibrosis. Journal of Pediatrics, 2015, 167, 138-147.e3.	1.8	131
83	Mannitol Does Not Enhance Tobramycin Killing of Pseudomonas aeruginosa in a Cystic Fibrosis Model System of Biofilm Formation. PLoS ONE, 2015, 10, e0141192.	2.5	16
84	Environmental Control of Cyclic Di-GMP Signaling in Pseudomonas fluorescens: from Signal to Output., 2014,, 282-290.		1
85	Structural Features of the Pseudomonas fluorescens Biofilm Adhesin LapA Required for LapG-Dependent Cleavage, Biofilm Formation, and Cell Surface Localization. Journal of Bacteriology, 2014, 196, 2775-2788.	2.2	83
86	Candida albicans Ethanol Stimulates Pseudomonas aeruginosa WspR-Controlled Biofilm Formation as Part of a Cyclic Relationship Involving Phenazines. PLoS Pathogens, 2014, 10, e1004480.	4.7	132
87	Investigating the Link Between Imipenem Resistance and Biofilm Formation by Pseudomonas aeruginosa. Microbial Ecology, 2014, 68, 111-120.	2.8	25
88	Iron supplementation does not worsen respiratory health or alter the sputum microbiome in cystic fibrosis. Journal of Cystic Fibrosis, 2014, 13, 311-318.	0.7	28
89	Plate-Based Assay for Swimming Motility in Pseudomonas aeruginosa. Methods in Molecular Biology, 2014, 1149, 59-65.	0.9	118
90	Deletion Mutant Library for Investigation of Functional Outputs of Cyclic Diguanylate Metabolism in Pseudomonas aeruginosa PA14. Applied and Environmental Microbiology, 2014, 80, 3384-3393.	3.1	89

#	Article	IF	Citations
91	Single-Molecule Analysis of <i>Pseudomonas fluorescens</i> Footprints. ACS Nano, 2014, 8, 1690-1698.	14.6	31
92	Surface attachment induces <i>Pseudomonas aeruginosa</i> virulence. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16860-16865.	7.1	187
93	Nanoscale Adhesion Forces of <i>Pseudomonas aeruginosa</i> Type IV Pili. ACS Nano, 2014, 8, 10723-10733.	14.6	141
94	Epoxide-Mediated Differential Packaging of Cif and Other Virulence Factors into Outer Membrane Vesicles. Journal of Bacteriology, 2014, 196, 3633-3642.	2.2	24
95	The microbiome in pediatric cystic fibrosis patients: the role of shared environment suggests a window of intervention. Microbiome, 2014, 2, 14.	11.1	46
96	Single-Cell and Single-Molecule Analysis Deciphers the Localization, Adhesion, and Mechanics of the Biofilm Adhesin LapA. ACS Chemical Biology, 2014, 9, 485-494.	3.4	60
97	The microbiota regulates susceptibility to Fas-mediated acute hepatic injury. Laboratory Investigation, 2014, 94, 938-949.	3.7	30
98	Characterization and quantification of the fungal microbiome in serial samples from individuals with cystic fibrosis. Microbiome, 2014, 2, 40.	11.1	128
99	Plate-Based Assay for Swarming Motility in Pseudomonas aeruginosa. Methods in Molecular Biology, 2014, 1149, 67-72.	0.9	82
100	Mechanistic insight into the conserved allosteric regulation of periplasmic proteolysis by the signaling molecule cyclic-di-GMP. ELife, 2014, 3, e03650.	6.0	41
101	Unique microbial communities persist in individual cystic fibrosis patients throughout a clinical exacerbation. Microbiome, $2013, 1, 27$.	11.1	126
102	Pouring Salt on a Wound: Pseudomonas aeruginosa Virulence Factors Alter Na+ and Cl- Flux in the Lung. Journal of Bacteriology, 2013, 195, 4013-4019.	2.2	50
103	Does the ΔF508-CFTR mutation induce a proinflammatory response in human airway epithelial cells?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L509-L518.	2.9	28
104	Iron Homeostasis during Cystic Fibrosis Pulmonary Exacerbation. Clinical and Translational Science, 2012, 5, 368-373.	3.1	29
105	Structural Characterization of a Conserved, Calcium-Dependent Periplasmic Protease from Legionella pneumophila. Journal of Bacteriology, 2012, 194, 4415-4425.	2.2	48
106	In vitro evaluation of tobramycin and aztreonam versus Pseudomonas aeruginosa biofilms on cystic fibrosis-derived human airway epithelial cells. Journal of Antimicrobial Chemotherapy, 2012, 67, 2673-2681.	3.0	60
107	LapG, Required for Modulating Biofilm Formation by Pseudomonasfluorescens Pf0-1, Is a Calcium-Dependent Protease. Journal of Bacteriology, 2012, 194, 4406-4414.	2.2	60
108	Diphosphonium Ionic Liquids as Broad-Spectrum Antimicrobial Agents. Cornea, 2012, 31, 810-816.	1.7	45

#	Article	IF	CITATIONS
109	Second Messenger Regulation of Biofilm Formation: Breakthroughs in Understanding c-di-GMP Effector Systems. Annual Review of Cell and Developmental Biology, 2012, 28, 439-462.	9.4	216
110	The CRISPR/Cas Adaptive Immune System of Pseudomonas aeruginosa Mediates Resistance to Naturally Occurring and Engineered Phages. Journal of Bacteriology, 2012, 194, 5728-5738.	2.2	248
111	Epoxide-Mediated CifR Repression of <i>cif</i> Gene Expression Utilizes Two Binding Sites in Pseudomonas aeruginosa. Journal of Bacteriology, 2012, 194, 5315-5324.	2.2	16
112	Atomic force and super-resolution microscopy support a role for LapA as a cell-surface biofilm adhesin of Pseudomonas fluorescens. Research in Microbiology, 2012, 163, 685-691.	2.1	50
113	Growing and Analyzing Static Biofilms. Current Protocols in Microbiology, 2011, 22, 1B.1.1.	6.5	160
114	Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling. Research in Microbiology, 2011, 162, 680-688.	2.1	120
115	Microtiter Dish Biofilm Formation Assay. Journal of Visualized Experiments, 2011, , .	0.3	1,259
116	A Pseudomonas aeruginosa Toxin that Hijacks the Host Ubiquitin Proteolytic System. PLoS Pathogens, 2011, 7, e1001325.	4.7	96
117	A c-di-GMP Effector System Controls Cell Adhesion by Inside-Out Signaling and Surface Protein Cleavage. PLoS Biology, 2011, 9, e1000587.	5.6	212
118	All together now: Integrating biofilm research across disciplines. MRS Bulletin, 2011, 36, 339-342.	3.5	40
119	Systematic Analysis of Diguanylate Cyclases That Promote Biofilm Formation by Pseudomonas fluorescens Pf0-1. Journal of Bacteriology, 2011, 193, 4685-4698.	2.2	113
120	Non-Identity-Mediated CRISPR-Bacteriophage Interaction Mediated via the Csy and Cas3 Proteins. Journal of Bacteriology, 2011, 193, 3433-3445.	2.2	137
121	Structural Basis for c-di-GMP-Mediated Inside-Out Signaling Controlling Periplasmic Proteolysis. PLoS Biology, 2011, 9, e1000588.	5.6	159
122	Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria. International Journal of Food Microbiology, 2010, 138, 176-180.	4.7	55
123	Cyclic-di-GMP-Mediated Repression of Swarming Motility by <i>Pseudomonas aeruginosa</i> : the <i>pilY1</i> Gene and Its Impact on Surface-Associated Behaviors. Journal of Bacteriology, 2010, 192, 2950-2964.	2.2	134
124	Di-Adenosine Tetraphosphate (Ap4A) Metabolism Impacts Biofilm Formation by <i>Pseudomonas fluorescens </i> via Modulation of c-di-GMP-Dependent Pathways. Journal of Bacteriology, 2010, 192, 3011-3023.	2.2	55
125	<i>Pseudomonas aeruginosa</i> Evasion of Phagocytosis Is Mediated by Loss of Swimming Motility and Is Independent of Flagellum Expression. Infection and Immunity, 2010, 78, 2937-2945.	2.2	121
126	Specific Control of Pseudomonas aeruginosa Surface-Associated Behaviors by Two c-di-GMP Diguanylate Cyclases. MBio, 2010, 1, .	4.1	165

#	Article	IF	CITATIONS
127	Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. International Microbiology, 2010, 13, 207-12.	2.4	82
128	A Pseudomonas aeruginosa toxin (Cif) reduces plasma membrane CFTR by inactivating the deubiquitinating enzyme USP10. FASEB Journal, 2010, 24, 610.14.	0.5	0
129	Flagellum-Mediated Biofilm Defense Mechanisms of <i>Pseudomonas aeruginosa</i> against Host-Derived Lactoferrin. Infection and Immunity, 2009, 77, 4559-4566.	2.2	27
130	LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by <i>Pseudomonas fluorescens</i> Pf0–1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3461-3466.	7.1	281
131	Interaction between Bacteriophage DMS3 and Host CRISPR Region Inhibits Group Behaviors of <i>Pseudomonas aeruginosa </i> i>, Journal of Bacteriology, 2009, 191, 210-219.	2.2	237
132	Long-Distance Delivery of Bacterial Virulence Factors by Pseudomonas aeruginosa Outer Membrane Vesicles. PLoS Pathogens, 2009, 5, e1000382.	4.7	486
133	Tobramycin and FDA-Approved Iron Chelators Eliminate <i>Pseudomonas aeruginosa</i> Biofilms on Cystic Fibrosis Cells. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 305-313.	2.9	172
134	The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends in Microbiology, 2009, 17, 73-87.	7.7	481
135	Pseudomonas aeruginosa toxin (Cif) induces lysosomal degradation of CFTR. FASEB Journal, 2009, 23, 998.17.	0.5	0
136	Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulmonary Pharmacology and Therapeutics, 2008, 21, 595-599.	2.6	272
137	The ΔF508-CFTR mutation results in increased biofilm formation by <i>Pseudomonas aeruginosa</i> by increasing iron availability. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L25-L37.	2.9	157
138	Genetic Evidence for an Alternative Citrate-Dependent Biofilm Formation Pathway in <i>Staphylococcus aureus</i> That Is Dependent on Fibronectin Binding Proteins and the GraRS Two-Component Regulatory System. Infection and Immunity, 2008, 76, 2469-2477.	2.2	70
139	Cif Is Negatively Regulated by the TetR Family Repressor CifR. Infection and Immunity, 2008, 76, 3197-3206.	2.2	37
140	In Vitro Analysis of Tobramycin-Treated <i>Pseudomonas aeruginosa</i> Biofilms on Cystic Fibrosis-Derived Airway Epithelial Cells. Infection and Immunity, 2008, 76, 1423-1433.	2.2	163
141	How Pseudomonas aeruginosa Regulates Surface Behaviors. Microbe Magazine, 2008, 3, 65-71.	0.4	13
142	Pseudomonas aeruginosa toxin reduces MHC class I antigen presentation. FASEB Journal, 2008, 22, 860.9.	0.5	0
143	The Pseudomonas aeruginosa Secreted Protein PA2934 Decreases Apical Membrane Expression of the Cystic Fibrosis Transmembrane Conductance Regulator. Infection and Immunity, 2007, 75, 3902-3912.	2.2	107
144	SadC Reciprocally Influences Biofilm Formation and Swarming Motility via Modulation of Exopolysaccharide Production and Flagellar Function. Journal of Bacteriology, 2007, 189, 8154-8164.	2.2	247

#	Article	IF	CITATIONS
145	BifA, a Cyclic-Di-GMP Phosphodiesterase, Inversely Regulates Biofilm Formation and Swarming Motility by Pseudomonas aeruginosa PA14. Journal of Bacteriology, 2007, 189, 8165-8178.	2.2	350
146	Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa. Research in Microbiology, 2007, 158, 471-477.	2.1	112
147	Inverse Regulation of Biofilm Formation and Swarming Motility by Pseudomonas aeruginosa PA14. Journal of Bacteriology, 2007, 189, 3603-3612.	2.2	255
148	Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA. Molecular Microbiology, 2007, 63, 656-79.	2.5	199
149	Saccharomyces cerevisiae -Based Molecular Tool Kit for Manipulation of Genes from Gram-Negative Bacteria. Applied and Environmental Microbiology, 2006, 72, 5027-5036.	3.1	384
150	Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces. Nephrology Dialysis Transplantation, 2006, 21, 2247-2255.	0.7	191
151	Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1. Applied and Environmental Microbiology, 2006, 72, 1910-1924.	3.1	124
152	Biofilm formation by Pseudomonas fluorescens WCS365: a role for LapD. Microbiology (United) Tj ETQq0 0 0 rg	BT /Qverlo	ock 10 Tf 50 4
153	Pseudomonas aeruginosarhamnolipids disperseBordetella bronchisepticabiofilms. FEMS Microbiology Letters, 2005, 250, 237-243.	1.8	142
154	Evidence for Two Flagellar Stators and Their Role in the Motility of Pseudomonas aeruginosa. Journal of Bacteriology, 2005, 187, 771-777.	2,2	159
155	Susceptibility of Biofilms to Bdellovibrio bacteriovorus Attack. Applied and Environmental Microbiology, 2005, 71, 4044-4051.	3.1	180
156	A Three-Component Regulatory System Regulates Biofilm Maturation and Type III Secretion in Pseudomonas aeruginosa. Journal of Bacteriology, 2005, 187, 1441-1454.	2.2	184
157	Bacterial Biofilms and Ocular Infections. Ocular Surface, 2005, 3, 73-80.	4.4	45
158	Growing and Analyzing Static Biofilms. , 2005, Chapter 1, Unit 1B.1.		667
159	SadB Is Required for the Transition from Reversible to Irreversible Attachment during Biofilm Formation by Pseudomonas aeruginosa PA14. Journal of Bacteriology, 2004, 186, 4476-4485.	2.2	190
160	Isolation and Characterization of a Generalized Transducing Phage for Pseudomonas aeruginosa Strains PAO1 and PA14. Journal of Bacteriology, 2004, 186, 3270-3273.	2.2	86
161	Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Molecular Microbiology, 2003, 49, 905-918.	2.5	438
162	A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature, 2003, 426, 306-310.	27.8	1,036

#	Article	IF	Citations
163	Rhamnolipid Surfactant Production Affects Biofilm Architecture in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 2003, 185, 1027-1036.	2.2	692
164	Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 <i>Pseudomonas aeruginosa</i> biofilms. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7907-7912.	7.1	395
165	To Build a Biofilm. Journal of Bacteriology, 2003, 185, 2687-2689.	2.2	116
166	Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 2001, 9, 34-39.	7.7	3,142
167	Surface-induced and biofilm-induced changes in gene expression. Current Opinion in Biotechnology, 2000, 11, 429-433.	6.6	143
168	Biofilm Formation as Microbial Development. Annual Review of Microbiology, 2000, 54, 49-79.	7.3	2,842
169	The Global Carbon Metabolism Regulator Crc Is a Component of a Signal Transduction Pathway Required for Biofilm Development by Pseudomonas aeruginosa. Journal of Bacteriology, 2000, 182, 425-431.	2.2	282
170	Microbial Biofilms: from Ecology to Molecular Genetics. Microbiology and Molecular Biology Reviews, 2000, 64, 847-867.	6.6	2,449
171	[6] Genetic approaches to study of biofilms. Methods in Enzymology, 1999, 310, 91-109.	1.0	708
172	Initiation of biofilm formation in <i>Pseudomonas fluorescens</i> WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Molecular Microbiology, 1998, 28, 449-461.	2.5	2,233
173	Flagellar and twitching motility are necessary for <i>Pseudomonas aeruginosa</i> biofilm development. Molecular Microbiology, 1998, 30, 295-304.	2.5	2,399
174	c-di-GMP and its Effects on Biofilm Formation and Dispersion: a <i>Pseudomonas Aeruginosa</i> Review., 0, , 301-317.		13
175	Metabolites as Intercellular Signals for Regulation of Community-Level Traits. , 0, , 105-129.		18