
Toshihiko Takemura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3764689/publications.pdf Version: 2024-02-01

Τοςμιμικό Τλκεμιιρά

#	Article	IF	CITATIONS
1	Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmospheric Chemistry and Physics, 2006, 6, 1777-1813.	4.9	1,202
2	Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity. Journal of Climate, 2010, 23, 6312-6335.	3.2	1,103
3	MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development, 2011, 4, 845-872.	3.6	1,070
4	Global dust model intercomparison in AeroCom phase I. Atmospheric Chemistry and Physics, 2011, 11, 7781-7816.	4.9	839
5	Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmospheric Chemistry and Physics, 2013, 13, 1853-1877.	4.9	779
6	A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmospheric Chemistry and Physics, 2006, 6, 613-666.	4.9	745
7	An AeroCom initial assessment – optical properties in aerosol component modules of global models. Atmospheric Chemistry and Physics, 2006, 6, 1815-1834.	4.9	697
8	Asian dust transported one full circuit around theÂglobe. Nature Geoscience, 2009, 2, 557-560.	12.9	689
9	Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmospheric Chemistry and Physics, 2006, 6, 5225-5246.	4.9	633
10	Aerosol and monsoon climate interactions over Asia. Reviews of Geophysics, 2016, 54, 866-929.	23.0	591
11	Evaluation of black carbon estimations in global aerosol models. Atmospheric Chemistry and Physics, 2009, 9, 9001-9026.	4.9	585
12	Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. Journal of Geophysical Research, 2005, 110, .	3.3	491
13	Single-Scattering Albedo and Radiative Forcing of Various Aerosol Species with a Global Three-Dimensional Model. Journal of Climate, 2002, 15, 333-352.	3.2	448
14	Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geoscientific Model Development, 2019, 12, 2727-2765.	3.6	439
15	Global air quality and climate. Chemical Society Reviews, 2012, 41, 6663.	38.1	428
16	A multi-model assessment of pollution transport to the Arctic. Atmospheric Chemistry and Physics, 2008, 8, 5353-5372.	4.9	419
17	Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data. Atmospheric Chemistry and Physics, 2009, 9, 8697-8717.	4.9	418
18	Radiative forcing in the ACCMIP historical and future climate simulations. Atmospheric Chemistry and Physics, 2013, 13, 2939-2974.	4.9	395

#	Article	IF	CITATIONS
19	Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environmental Research Letters, 2013, 8, 034005.	5.2	381
20	Global three-dimensional simulation of aerosol optical thickness distribution of various origins. Journal of Geophysical Research, 2000, 105, 17853-17873.	3.3	379
21	The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmospheric Chemistry and Physics, 2014, 14, 10845-10895.	4.9	363
22	Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in east Asia. Journal of Geophysical Research, 2007, 112, .	3.3	263
23	Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data. Journal of Geophysical Research, 2003, 108, .	3.3	258
24	Aerosol anthropogenic component estimated from satellite data. Geophysical Research Letters, 2005, 32, .	4.0	257
25	A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum. Atmospheric Chemistry and Physics, 2009, 9, 3061-3073.	4.9	230
26	The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment. Atmospheric Chemistry and Physics, 2007, 7, 4489-4501.	4.9	228
27	Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmospheric Chemistry and Physics, 2013, 13, 2423-2434.	4.9	223
28	Model intercomparison of indirect aerosol effects. Atmospheric Chemistry and Physics, 2006, 6, 3391-3405.	4.9	205
29	Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study. Geophysical Research Letters, 2016, 43, 2782-2791.	4.0	179
30	Aerosol optical properties over east Asia determined from ground-based sky radiation measurements. Journal of Geophysical Research, 2004, 109, .	3.3	178
31	Future global mortality from changes in air pollution attributable to climate change. Nature Climate Change, 2017, 7, 647-651.	18.8	177
32	Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results. Journal of Geophysical Research, 2012, 117, .	3.3	170
33	Global and regional trends of atmospheric sulfur. Scientific Reports, 2019, 9, 953.	3.3	166
34	Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations. Atmospheric Chemistry and Physics, 2014, 14, 12465-12477.	4.9	157
35	Significance of direct and indirect radiative forcings of aerosols in the East China Sea region. Journal of Geophysical Research, 2003, 108, .	3.3	148
36	Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study. Atmospheric Chemistry and Physics, 2013, 13, 3245-3270.	4.9	143

#	Article	IF	CITATIONS
37	An "A-Train―Strategy for Quantifying Direct Climate Forcing by Anthropogenic Aerosols. Bulletin of the American Meteorological Society, 2005, 86, 1795-1810.	3.3	138
38	Intercomparison of the cloud water phase among global climate models. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3372-3400.	3.3	126
39	Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 2607-2634.	4.9	125
40	Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5804-5811.	7.1	120
41	Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon Concentrations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11462-11481.	3.3	118
42	PDRMIP: A Precipitation Driver and Response Model Intercomparison Project—Protocol and Preliminary Results. Bulletin of the American Meteorological Society, 2017, 98, 1185-1198.	3.3	116
43	A multi-model evaluation of aerosols over South Asia: common problems and possible causes. Atmospheric Chemistry and Physics, 2015, 15, 5903-5928.	4.9	113
44	Understanding Rapid Adjustments to Diverse Forcing Agents. Geophysical Research Letters, 2018, 45, 12023-12031.	4.0	113
45	Trans-pacific dust transport: integrated analysis of NASA/CALIPSO and a global aerosol transport model. Atmospheric Chemistry and Physics, 2009, 9, 3137-3145.	4.9	112
46	Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer. Atmospheric Environment, 2010, 44, 3511-3518.	4.1	112
47	Applying an ensemble Kalman filter to the assimilation of AERONET observations in a global aerosol transport model. Atmospheric Chemistry and Physics, 2010, 10, 2561-2576.	4.9	111
48	New estimation of N ₂ fixation in the western and central Pacific Ocean and its marginal seas. Global Biogeochemical Cycles, 2010, 24, .	4.9	110
49	Modeling study of long-range transport of Asian dust and anthropogenic aerosols from East Asia. Geophysical Research Letters, 2002, 29, 11-1-11-4.	4.0	109
50	Historical and future changes in air pollutants from CMIP6 models. Atmospheric Chemistry and Physics, 2020, 20, 14547-14579.	4.9	105
51	Aerosol optical depth, physical properties and radiative forcing over the Arabian Sea. Meteorology and Atmospheric Physics, 2006, 91, 45-62.	2.0	103
52	The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble. Atmospheric Chemistry and Physics, 2016, 16, 9847-9862.	4.9	101
53	Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud–East Asia Regional Experiment campaign. Journal of Geophysical Research, 2007, 112, .	3.3	97
54	AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations. Atmospheric Chemistry and Physics, 2021, 21, 87-128.	4.9	96

#	Article	IF	CITATIONS
55	Macroâ€scale exhaustion of surface phosphate by dinitrogen fixation in the western North Pacific. Geophysical Research Letters, 2009, 36, .	4.0	95
56	An elevated large-scale dust veil from the Taklimakan Desert: Intercontinental transport and three-dimensional structure as captured by CALIPSO and regional and global models. Atmospheric Chemistry and Physics, 2009, 9, 8545-8558.	4.9	95
57	A Numerical Simulation of Global Transport of Atmospheric Particles Emitted from the Fukushima Daiichi Nuclear Power Plant. Scientific Online Letters on the Atmosphere, 2011, 7, 101-104.	1.4	92
58	Sources, sinks, and transatlantic transport of North African dust aerosol: A multimodel analysis and comparison with remote sensing data. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6259-6277.	3.3	88
59	Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the periodÂ1990–2015. Atmospheric Chemistry and Physics, 2017, 17, 2709-2720.	4.9	87
60	An AeroCom assessment of black carbon in Arctic snow and sea ice. Atmospheric Chemistry and Physics, 2014, 14, 2399-2417.	4.9	86
61	A PDRMIP Multimodel Study on the Impacts of Regional Aerosol Forcings on Global and Regional Precipitation. Journal of Climate, 2018, 31, 4429-4447.	3.2	83
62	What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II. Atmospheric Chemistry and Physics, 2016, 16, 2221-2241.	4.9	82
63	Numerical study of Asian dust transport during the springtime of 2001 simulated with the Chemical Weather Forecasting System (CFORS) model. Journal of Geophysical Research, 2004, 109, .	3.3	80
64	Global observations of aerosol impacts on precipitation occurrence in warm maritime clouds. Journal of Geophysical Research, 2009, 114, .	3.3	80
65	Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7254-7283.	3.3	80
66	Spatial scales of climate response to inhomogeneous radiative forcing. Journal of Geophysical Research, 2010, 115, .	3.3	79
67	Constraining the instantaneous aerosol influence on cloud albedo. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4899-4904.	7.1	77
68	Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model. Nature Communications, 2018, 9, 985.	12.8	73
69	Estimated range of black carbon dry deposition and the related snow albedo reduction over Himalayan glaciers during dry pre-monsoon periods. Atmospheric Environment, 2013, 78, 259-267.	4.1	70
70	The role of mineral-dust aerosols in polar temperature amplification. Nature Climate Change, 2013, 3, 487-491.	18.8	70
71	On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models. Atmospheric Chemistry and Physics, 2016, 16, 2765-2783.	4.9	67
72	The source of discrepancies in aerosol–cloud–precipitation interactions between GCM and A-Train retrievals. Atmospheric Chemistry and Physics, 2016, 16, 15413-15424.	4.9	66

5

#	Article	IF	CITATIONS
73	Large Asian dust layers continuously reached North America in April 2010. Atmospheric Chemistry and Physics, 2011, 11, 7333-7341.	4.9	65
74	Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison. Atmospheric Chemistry and Physics, 2021, 21, 853-874.	4.9	65
75	Impacts of intercontinental transport of anthropogenic fine particulate matter on human mortality. Air Quality, Atmosphere and Health, 2014, 7, 369-379.	3.3	64
76	The Caspian Sea–Hindu Kush Index (CasHKI): A regulatory factor for dust activity over southwest Asia. Global and Planetary Change, 2016, 137, 10-23.	3.5	63
77	Model depiction of the atmospheric flows of radioactive cesium emitted from the Fukushima Daiichi Nuclear Power Station accident. Progress in Earth and Planetary Science, 2017, 4, .	3.0	63
78	Drivers of Precipitation Change: An Energetic Understanding. Journal of Climate, 2018, 31, 9641-9657.	3.2	63
79	Aerosol distributions and radiative forcing over the Asian Pacific region simulated by Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS). Journal of Geophysical Research, 2003, 108, .	3.3	59
80	Influence of anomalous dry conditions on aerosols over India: Transport, distribution and properties. Journal of Geophysical Research, 2012, 117, .	3.3	59
81	Global cloudâ€systemâ€resolving simulation of aerosol effect on warm clouds. Geophysical Research Letters, 2008, 35, .	4.0	58
82	Future projections of surface UV-B in a changing climate. Journal of Geophysical Research, 2011, 116, .	3.3	58
83	Soot microphysical effects on liquid clouds, a multi-model investigation. Atmospheric Chemistry and Physics, 2011, 11, 1051-1064.	4.9	58
84	Aerosol singleâ€scattering albedo over the global oceans: Comparing PARASOL retrievals with AERONET, OMI, and AeroCom models estimates. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9814-9836.	3.3	58
85	Aerosols at the poles: an AeroCom Phase II multi-model evaluation. Atmospheric Chemistry and Physics, 2017, 17, 12197-12218.	4.9	58
86	Analysis of surface black carbon distributions during ACE-Asia using a regional-scale aerosol model. Journal of Geophysical Research, 2003, 108, .	3.3	57
87	Tropospheric aerosol impacts on trace gas budgets through photolysis. Journal of Geophysical Research, 2003, 108, .	3.3	55
88	Efficacy of Climate Forcings in PDRMIP Models. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12824-12844.	3.3	55
89	HTAP2 multi-model estimates of premature human mortality due to intercontinental transport of air pollution and emission sectors. Atmospheric Chemistry and Physics, 2018, 18, 10497-10520.	4.9	54
90	Synoptic weather conditions and aerosol episodes over Indo-Gangetic Plains, India. Climate Dynamics, 2014, 43, 2313-2331.	3.8	51

#	Article	IF	CITATIONS
91	A multimodel assessment of the influence of regional anthropogenic emission reductions on aerosol direct radiative forcing and the role of intercontinental transport. Journal of Geophysical Research D: Atmospheres, 2013, 118, 700-720.	3.3	49
92	Multi-model study of HTAPÂII on sulfur and nitrogen deposition. Atmospheric Chemistry and Physics, 2018, 18, 6847-6866.	4.9	49
93	A Study of the Aerosol Effect on a Cloud Field with Simultaneous Use of GCM Modeling and Satellite Observation. Journals of the Atmospheric Sciences, 2004, 61, 179-194.	1.7	48
94	Sensitivity tests for an ensemble Kalman filter for aerosol assimilation. Atmospheric Chemistry and Physics, 2010, 10, 6583-6600.	4.9	48
95	Distributions and climate effects of atmospheric aerosols from the preindustrial era to 2100 along Representative Concentration Pathways (RCPs) simulated using the global aerosol model SPRINTARS. Atmospheric Chemistry and Physics, 2012, 12, 11555-11572.	4.9	48
96	Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai. Journal of Geophysical Research, 2007, 112, .	3.3	47
97	A study of uncertainties in the sulfate distribution and its radiative forcing associated with sulfur chemistry in a global aerosol model. Atmospheric Chemistry and Physics, 2011, 11, 10889-10910.	4.9	46
98	Episodic upwelling and dust deposition as bloom triggers in low-nutrient, low-chlorophyll regions. Journal of Geophysical Research, 2011, 116, .	3.3	44
99	Sensible heat has significantly affected the global hydrological cycle over the historical period. Nature Communications, 2018, 9, 1922.	12.8	44
100	Weak global warming mitigation by reducing black carbon emissions. Scientific Reports, 2019, 9, 4419.	3.3	44
101	Prognostic Precipitation in the MIROC6â€6PRINTARS GCM: Description and Evaluation Against Satellite Observations. Journal of Advances in Modeling Earth Systems, 2019, 11, 839-860.	3.8	44
102	Historical total ozone radiative forcing derived from CMIP6 simulations. Npj Climate and Atmospheric Science, 2020, 3, .	6.8	44
103	Global aerosol model-derived black carbon concentration and single scattering albedo over Indian region and its comparison with ground observations. Atmospheric Environment, 2011, 45, 3277-3285.	4.1	43
104	Longâ€ŧerm inverse modeling of Asian dust: Interannual variations of its emission, transport, deposition, and radiative forcing. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1582-1607.	3.3	43
105	Global and regional radiative forcing from 20â€ ⁻ % reductions in BC, OC and SO ₄ – an HTAP2 multi-model study. Atmospheric Chemistry and Physics, 2016, 16, 13579-13599.	4.9	42
106	Evaluation of autoconversion schemes in a single model framework with satellite observations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9570-9590.	3.3	40
107	Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols. Atmospheric Chemistry and Physics, 2018, 18, 8439-8452.	4.9	40
108	Vertical cloud properties in the tropical western Pacific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar. Journal of Geophysical Research, 2008, 113, .	3.3	39

#	Article	IF	CITATIONS
109	Summertime transâ€Pacific transport of Asian dust. Geophysical Research Letters, 2010, 37, .	4.0	39
110	Arctic Amplification Response to Individual Climate Drivers. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6698-6717.	3.3	39
111	Surprising similarities in model and observational aerosol radiative forcing estimates. Atmospheric Chemistry and Physics, 2020, 20, 613-623.	4.9	39
112	Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmospheric Chemistry and Physics, 2021, 21, 1105-1126.	4.9	39
113	Evaluation of climate model aerosol trends with ground-based observations over the last 2Âdecades – an AeroCom and CMIP6 analysis. Atmospheric Chemistry and Physics, 2020, 20, 13355-13378.	4.9	38
114	Structure of dust and air pollutant outflow over East Asia in the spring. Geophysical Research Letters, 2010, 37, .	4.0	37
115	Characteristics of Asian aerosol transport simulated with a regional-scale chemical transport model during the ACE-Asia observation. Journal of Geophysical Research, 2004, 109, .	3.3	36
116	Importance of global aerosol modeling including secondary organic aerosol formed from monoterpene. Journal of Geophysical Research, 2008, 113, .	3.3	36
117	Carbon Dioxide Physiological Forcing Dominates Projected Eastern Amazonian Drying. Geophysical Research Letters, 2018, 45, 2815-2825.	4.0	35
118	Emission scenario dependencies in climate change assessments of the hydrological cycle. Climatic Change, 2010, 99, 321-329.	3.6	34
119	Emission Scenario Dependency of Precipitation on Global Warming in the MIROC3.2 Model. Journal of Climate, 2010, 23, 2404-2417.	3.2	34
120	Assessment of changes in atmospheric dynamics and dust activity over southwest Asia using the Caspian Sea–Hindu Kush Index. International Journal of Climatology, 2017, 37, 1013-1034.	3.5	33
121	Weak hydrological sensitivity to temperature change over land, independent of climate forcing. Npj Climate and Atmospheric Science, 2018, 1, .	6.8	33
122	Modeling the influence of aerosols on cloud microphysical properties in the east Asia region using a mesoscale model coupled with a binâ€based cloud microphysics scheme. Journal of Geophysical Research, 2008, 113, .	3.3	32
123	Perturbations to Global Energy Budget Due to Absorbing and Scattering Aerosols. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2194-2209.	3.3	32
124	Direct radiative effect of aerosols estimated using ensemble-based data assimilation in a global aerosol climate model. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	31
125	Climate and air quality impacts due to mitigation of non-methane near-term climate forcers. Atmospheric Chemistry and Physics, 2020, 20, 9641-9663.	4.9	30
126	A study of long-term trends in mineral dust aerosol distributions in Asia using a general circulation model. Journal of Geophysical Research, 2004, 109, .	3.3	29

#	Article	IF	CITATIONS
127	A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models. Atmospheric Chemistry and Physics, 2014, 14, 877-897.	4.9	29
128	SLCP co-control approach in East Asia: Tropospheric ozone reduction strategy by simultaneous reduction of NO x /NMVOC and methane. Atmospheric Environment, 2015, 122, 588-595.	4.1	29
129	Unrealistically pristine air in the Arctic produced by current global scale models. Scientific Reports, 2016, 6, 26561.	3.3	29
130	Water vapour adjustments and responses differ between climate drivers. Atmospheric Chemistry and Physics, 2019, 19, 12887-12899.	4.9	29
131	Aerosol absorption in global models from AeroCom phase III. Atmospheric Chemistry and Physics, 2021, 21, 15929-15947.	4.9	27
132	An evaluation of simulated particulate sulfate over East Asia through global model intercomparison. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6247-6270.	3.3	26
133	Quantifying the Importance of Rapid Adjustments for Global Precipitation Changes. Geophysical Research Letters, 2018, 45, 11399-11405.	4.0	26
134	Simulation of Future Aerosol Distribution, Radiative Forcing, and Long-Range Transport in East Asia Journal of the Meteorological Society of Japan, 2001, 79, 1139-1155.	1.8	25
135	Long term climatology of particulate matter and associated microphysical and optical properties over Dibrugarh, North-East India and inter-comparison with SPRINTARS simulations. Atmospheric Environment, 2013, 69, 334-344.	4.1	25
136	Simulations of black carbon (BC) aerosol impact over Hindu Kush Himalayan sites: validation, sources, and implications on glacier runoff. Atmospheric Chemistry and Physics, 2019, 19, 2441-2460.	4.9	25
137	Bias in CMIP6 models as compared to observed regional dimming and brightening. Atmospheric Chemistry and Physics, 2020, 20, 16023-16040.	4.9	25
138	Asian and Transâ€Pacific Dust: A Multimodel and Multiremote Sensing Observation Analysis. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13534-13559.	3.3	24
139	Aerosol retrieval from twoâ€wavelength backscatter and oneâ€wavelength polarization lidar measurement taken during the MR01K02 cruise of the R/V <i>Mirai</i> and evaluation of a global aerosol transport model. Journal of Geophysical Research, 2008, 113, .	3.3	23
140	Physical mechanism of longâ€ŧerm drying trend over tropical North Africa. Geophysical Research Letters, 2010, 37, .	4.0	23
141	Comparison of aerosol optical properties above clouds between POLDER and AeroCom models over the South East Atlantic Ocean during the fire season. Geophysical Research Letters, 2016, 43, 3991-4000.	4.0	23
142	How aerosols and greenhouse gases influence the diurnal temperature range. Atmospheric Chemistry and Physics, 2020, 20, 13467-13480.	4.9	23
143	Long-Range Transport of Saharan Dust to East Asia Observed with Lidars. Scientific Online Letters on the Atmosphere, 2005, 1, 121-124.	1.4	21
144	Spatial heterogeneity in near surface aerosol characteristics across the Brahmaputra valley. Journal of Earth System Science, 2014, 123, 651-663.	1.3	21

#	Article	IF	CITATIONS
145	Source contributions to sulfur and nitrogen deposition – an HTAP II multi-model study on hemispheric transport. Atmospheric Chemistry and Physics, 2018, 18, 12223-12240.	4.9	21
146	Extreme wet and dry conditions affected differently by greenhouse gases and aerosols. Npj Climate and Atmospheric Science, 2019, 2, .	6.8	21
147	Comparison of Effective Radiative Forcing Calculations Using Multiple Methods, Drivers, and Models. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4382-4394.	3.3	21
148	Time evolutions of various radiative forcings for the past 150 years estimated by a general circulation model. Geophysical Research Letters, 2006, 33, .	4.0	20
149	The SPRINTARS version 3.80/4D-Var data assimilation system: development and inversion experiments based on the observing system simulation experiment framework. Geoscientific Model Development, 2013, 6, 2005-2022.	3.6	20
150	Increasing potential of biomass burning over Sumatra, Indonesia induced by anthropogenic tropical warming. Environmental Research Letters, 2014, 9, 104010.	5.2	20
151	Modulation of Cloud Droplets and Radiation over the North Pacific by Sulfate Aerosol Erupted from Mount Kilauea. Scientific Online Letters on the Atmosphere, 2011, 7, 77-80.	1.4	20
152	Effect of carbonaceous aerosols on surface temperature in the mid twentieth century. Geophysical Research Letters, 2006, 33, .	4.0	18
153	Two competing pathways of aerosol effects on cloud and precipitation formation. Geophysical Research Letters, 2007, 34, .	4.0	18
154	Anthropogenic changes in the surface all-sky UV-B radiation through 1850–2005 simulated by an Earth system model. Atmospheric Chemistry and Physics, 2012, 12, 5249-5257.	4.9	18
155	Effect of high dust amount on surface temperature during the Last Glacial Maximum: a modelling study using MIROC-ESM. Climate of the Past, 2018, 14, 1565-1581.	3.4	18
156	Fast responses on pre-industrial climate from present-day aerosols in a CMIP6 multi-model study. Atmospheric Chemistry and Physics, 2020, 20, 8381-8404.	4.9	18
157	A study of anthropogenic impacts of the radiation budget and the cloud field in East Asia based on model simulations with GCM. Journal of Geophysical Research, 2008, 113, .	3.3	17
158	Corrigendum to "Evaluation of black carbon estimations in global aerosol models" published in Atmos. Chem. Phys., 9, 9001-9026, 2009. Atmospheric Chemistry and Physics, 2010, 10, 79-81.	4.9	17
159	Sensitivity of aerosol to assumed optical properties over Asia using a global aerosol model and AERONET. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	17
160	Evaluation of Cloud Microphysics in JMA-NHM Simulations Using Bin or Bulk Microphysical Schemes through Comparison with Cloud Radar Observations. Journals of the Atmospheric Sciences, 2012, 69, 2566-2586.	1.7	17
161	Distinct responses of Asian summer monsoon to black carbon aerosols and greenhouse gases. Atmospheric Chemistry and Physics, 2020, 20, 11823-11839.	4.9	15
162	Simulation of aerosol optical properties over a tropical urban site in India using a global model and its comparison with ground measurements. Annales Geophysicae, 2011, 29, 955-963.	1.6	14

#	Article	IF	CITATIONS
163	The effects of aerosols on water cloud microphysics and macrophysics based on satellite-retrieved data over East Asia and the North Pacific. Atmospheric Chemistry and Physics, 2014, 14, 11935-11948.	4.9	14
164	Sizeâ€resolved adjoint inversion of Asian dust. Geophysical Research Letters, 2012, 39, .	4.0	12
165	Inter-comparison and performance evaluation of chemistry transport models over Indian region. Atmospheric Environment, 2016, 125, 486-504.	4.1	12
166	Response of the atmospheric hydrological cycle over the tropical Asian monsoon regions to anthropogenic aerosols and its seasonality. Progress in Earth and Planetary Science, 2018, 5, .	3.0	12
167	Long-range transport impacts on surface aerosol concentrations and the contributions to haze events in China: an HTAP2 multi-model study. Atmospheric Chemistry and Physics, 2018, 18, 15581-15600.	4.9	12
168	Snow-induced buffering in aerosol–cloud interactions. Atmospheric Chemistry and Physics, 2020, 20, 13771-13780.	4.9	12
169	Impact of carbonaceous aerosols on precipitation in tropical Africa during the austral summer in the twentieth century. Journal of Geophysical Research, 2011, 116, .	3.3	11
170	Relationship between fine-mode AOD and precipitation on seasonal and interannual time scales. Tellus, Series B: Chemical and Physical Meteorology, 2014, 66, 23037.	1.6	11
171	A development of reduction scenarios of the short-lived climate pollutants (SLCPs) for mitigating global warming and environmental problems. Progress in Earth and Planetary Science, 2020, 7, .	3.0	11
172	How well do aerosol retrievals from satellites and representation in global circulation models match ground-based AERONET aerosol statistics?. Advances in Global Change Research, 2001, , 103-158.	1.6	10
173	Influence of natural and anthropogenic emissions on aerosol optical properties over a tropical urban site — A study using sky radiometer and satellite data. Atmospheric Research, 2011, 100, 111-120.	4.1	10
174	Two-scale multi-model ensemble: is a hybrid ensemble of opportunity telling us more?. Atmospheric Chemistry and Physics, 2018, 18, 8727-8744.	4.9	10
175	Comparisons of Warm Cloud Properties Obtained from Satellite, Ground, and Aircraft Measurements during APEX Intensive Observation Period in 2000 and 2001. Journal of the Meteorological Society of Japan, 2005, 83, 1085-1095.	1.8	9
176	Return to different climate states by reducing sulphate aerosols under future CO2 concentrations. Scientific Reports, 2020, 10, 21748.	3.3	8
177	Cloudy-sky contributions to the direct aerosol effect. Atmospheric Chemistry and Physics, 2020, 20, 8855-8865.	4.9	8
178	Evaluation of a relationship between aerosols and surface downward shortwave flux through an integrative analysis of modeling and observation. Atmospheric Environment, 2012, 49, 294-301.	4.1	7
179	The effect of rapid adjustments to halocarbons and N2O on radiative forcing. Npj Climate and Atmospheric Science, 2020, 3, .	6.8	7
180	Characterization of ice cloud properties obtained by shipborne radar/lidar over the tropical western Pacific Ocean for evaluation of an atmospheric general circulation model. Journal of Geophysical Research, 2010, 115, .	3.3	6

#	Article	IF	CITATIONS
181	Global Climate Modeling of Regional Changes in Cloud, Precipitation, and Radiation Budget Due to the Aerosol Semi-Direct Effect of Black Carbon. Scientific Online Letters on the Atmosphere, 2011, 7, 181-184.	1.4	5
182	Effect of global atmospheric aerosol emission change on PM _{2.5} -related health impacts. Global Health Action, 2019, 12, 1664130.	1.9	5
183	Evaluation of autoconversion schemes in a single model framework with satellite observations. Journal of Geophysical Research D: Atmospheres, 2015, , n/a-n/a.	3.3	5
184	Simulating and Evaluating Global Aerosol Distributions With the Online Aerosol oupled CASâ€FGOALS Model. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032097.	3.3	5
185	Scientific data from precipitation driver response model intercomparison project. Scientific Data, 2022, 9, 123.	5.3	5
186	An estimation of the radioactive 35S emitted into the atmospheric from the Fukushima Daiichi Nuclear Power Plant by using a numerical simulation global transport. Geochemical Journal, 2012, 46, 335-339.	1.0	4
187	Effect of temperature-dependent cross sections on O4 slant column density estimation by a space-borne UV–visible hyperspectral sensor. Atmospheric Environment, 2017, 152, 98-110.	4.1	4
188	Comparison of aerosol optical depth between observation and simulation from MIROC-SPRINTARS: Effects of temporal inhomogeneous sampling. Atmospheric Environment, 2018, 186, 56-73.	4.1	4
189	Understanding Topâ€ofâ€Atmosphere Flux Bias in the AeroCom Phase III Models: A Clearâ€5ky Perspective. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002584.	3.8	4
190	Corrigendum to "Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)" published in Atmos. Chem. Phys., 13, 2607–2634, 2013. Atmospheric Chemistry and Physics, 2013, 13, 6553-6554.	4.9	3
191	Aerosol Effective Radiative Forcing in the Online Aerosol Coupled CAS-FGOALS-f3-L Climate Model. Atmosphere, 2020, 11, 1115.	2.3	3
192	The Southern Hemisphere Midlatitude Circulation Response to Rapid Adjustments and Sea Surface Temperature Driven Feedbacks. Journal of Climate, 2020, 33, 9673-9690.	3.2	3
193	Tracing airborne particles after Japan's nuclear plant explosion. Eos, 2011, 92, 397-398.	0.1	2
194	Aerosol climatology over Japan site measured by ground-based sky radiometer. , 2013, , .		2
195	Distinct surface response to black carbon aerosols. Atmospheric Chemistry and Physics, 2021, 21, 13797-13809.	4.9	2
196	Understanding Hydrological Sensitivities Induced by Various Forcing Agents with a Climate Model. Scientific Online Letters on the Atmosphere, 2020, 16, 240-245.	1.4	2
197	Aerosols all over the world from ADEOS/POLDER. , 0, , .		1
198	Inter-comparison of the phase partitioning of cloud water among global climate models. , 2013, , .		1

#	Article	IF	CITATIONS
199	Aerosol and monsoon climate interactions over Asia. , 2016, 54, 866.		1
200	Early Radiological Impacts of Fukushima Daiichi Nuclear Power Plant Accident Fallout in Fukuoka Prefecture. Radioisotopes, 2013, 62, 847-855.	0.2	1
201	IMPACT OF SHORT-LIVED CLIMATE POLLUTANTS ON TERRESTRIAL WATER CIRCULATION. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2018, 74, I_217-I_222.	0.1	1
202	Synergetic Observations by Ground-Based and Space Lidar Systems and Aeronet Sun-Radiometers: A Step to Advanced Regional Monitoring of Large Scale Aerosol Changes. EPJ Web of Conferences, 2020, 237, 02035.	0.3	1
203	<title>Effect of aerosols on cloud field with satellite-derived and GCM simulation</title> . , 2001, , .		ο
204	<title>Global three-dimensional simulation and radiative forcing of various aerosol species with GCM</title> . , 2001, 4150, 249.		0
205	Cloud growth process appeared in the global scale distribution of the cloud optical and microphysical properties retrieved from the satellite remote sensing. , 2008, , .		0
206	Aerosol Retrieval from Dualâ€wavelength Polarization Lidar Measurements over Tropical Pacific Ocean and Validation of a Global Aerosol Transport Model. , 2009, , .		0
207	An aerosol assimilation system based on SPRINTARS and LETKF. , 2009, , .		0
208	Correction to "Physical mechanism of long-term drying trend over tropical North Africa― Geophysical Research Letters, 2010, 37, n/a-n/a.	4.0	0
209	Evaluation of a relationship between aerosols and surface downward shortwave flux through an integrative analysis of a global aerosol-transport model and in-situ measurements. , 2013, , .		0
210	Regional climatic effects according to different estimations of biogenic volatile organic compounds during the asian summer monsoon. Asia-Pacific Journal of Atmospheric Sciences, 2014, 50, 423-435.	2.3	0
211	Wind for Transporting Materials—Transport Processes of Aerosols in the Atmosphere—. Wind Engineers JAWE, 2012, 37, 192-197.	0.1	0
212	Overview of Aerosol Forecasting System and Recent Transboundary Air Pollution. Wind Engineers JAWE, 2013, 38, 426-433.	0.1	0