Laura T Iraci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3764651/publications.pdf Version: 2024-02-01

Ι ΛΙΙΦΑ Τ ΙΦΑCL

#	Article	IF	CITATIONS
1	An 11-year record of XCO ₂ estimates derived from GOSAT measurements using the NASA ACOS version 9 retrieval algorithm. Earth System Science Data, 2022, 14, 325-360.	9.9	17
2	A Collection of Airborne Measurements and Analyses of Trace Gases Emitted From Multiple Fires in California. Earth and Space Science, 2022, 9, .	2.6	5
3	Regional and Urban Column CO Trends and Anomalies as Observed by MOPITT Over 16ÂYears. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033967.	3.3	10
4	The Adaptable 4A Inversion (5AI): description and first <i>X</i> _{CO₂&Jt/sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations. Atmospheric Measurement Techniques, 2021, 14, 4689-4706.}		
5	Urban-focused satellite CO2 observations from the Orbiting Carbon Observatory-3: A first look at the Los Angeles megacity. Remote Sensing of Environment, 2021, 258, 112314.	11.0	48
6	Investigating the Condensation of Benzene (C ₆ H ₆) in Titan's South Polar Cloud System with a Combination of Laboratory, Observational, and Modeling Tools. Planetary Science Journal, 2021, 2, 121.	3.6	4
7	Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations. Atmospheric Measurement Techniques, 2021, 14, 6249-6304.	3.1	57
8	Air pollution inputs to the Mojave Desert by fusing surface mobile and airborne in situ and airborne and satellite remote sensing: A case study of interbasin transport with numerical model validation. Atmospheric Environment, 2020, 224, 117184.	4.1	6
9	Bias Correction of the Ratio of Total Column CH4 to CO2 Retrieved from GOSAT Spectra. Remote Sensing, 2020, 12, 3155.	4.0	2
10	Validation of Carbon Trace Gas Profile Retrievals from the NOAA-Unique Combined Atmospheric Processing System for the Cross-Track Infrared Sounder. Remote Sensing, 2020, 12, 3245.	4.0	23
11	Improved Constraints on Northern Extratropical CO ₂ Fluxes Obtained by Combining Surfaceâ€Based and Spaceâ€Based Atmospheric CO ₂ Measurements. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032029.	3.3	26
12	Terrain Trapped Airflows and Precipitation Variability during an Atmospheric River Event. Journal of Hydrometeorology, 2020, 21, 355-375.	1.9	6
13	Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003–2018) for carbon and climate applications. Atmospheric Measurement Techniques, 2020, 13, 789-819.	3.1	22
14	Ozone Production in the Soberanes Smoke Haze: Implications for Air Quality in the San Joaquin Valley During the California Baseline Ozone Transport Study. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031777.	3.3	13
15	The California Baseline Ozone Transport Study (CABOTS). Bulletin of the American Meteorological Society, 2020, 101, E427-E445.	3.3	20
16	A Multiplatform Inversion Estimation of Statewide and Regional Methane Emissions in California during 2014–2016. Environmental Science & Technology, 2019, 53, 9636-9645.	10.0	7
17	Intercomparison of lidar, aircraft, and surface ozone measurements in the San Joaquin Valley during the California Baseline Ozone Transport Study (CABOTS). Atmospheric Measurement Techniques, 2019, 12, 1889-1904.	3.1	16
18	Quantification of CO ₂ and CH ₄ emissions over Sacramento, California, based on divergence theorem using aircraft measurements. Atmospheric Measurement Techniques, 2019, 12, 2949-2966.	3.1	11

Laura T Iraci

#	Article	IF	CITATIONS
19	Evaluation of Bias Correction Methods for GOSAT SWIR XH2O Using TCCON data. Remote Sensing, 2019, 11, 290.	4.0	2
20	C6H6 condensation on Titan's stratospheric aerosols: An integrated laboratory, modeling and experimental approach. Proceedings of the International Astronomical Union, 2019, 15, 189-192.	0.0	0
21	Evaluation of MOPITT VersionÂ7 joint TIR–NIR X _{CO} retrievals with TCCON. Atmospheric Measurement Techniques, 2019, 12, 5547-5572.	3.1	21
22	A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor. Atmospheric Measurement Techniques, 2019, 12, 6771-6802.	3.1	71
23	Chlorine-containing salts as water ice nucleating particles on Mars. Icarus, 2018, 303, 280-287.	2.5	4
24	Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm. Atmospheric Measurement Techniques, 2018, 11, 6539-6576.	3.1	188
25	Southern California megacity CO ₂ , CH ₄ , and CO flux estimates using ground- and space-based remote sensing and a Lagrangian model. Atmospheric Chemistry and Physics, 2018, 18, 16271-16291.	4.9	56
26	Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field. Atmospheric Measurement Techniques, 2018, 11, 1689-1705.	3.1	13
27	Carbon dioxide retrieval from OCO-2 satellite observations using the RemoTeC algorithm and validation with TCCON measurements. Atmospheric Measurement Techniques, 2018, 11, 3111-3130.	3.1	45
28	Investigating sources of ozone over California using AJAX airborne measurements and models: Assessing the contribution from long-range transport. Atmospheric Environment, 2017, 155, 53-67.	4.1	13
29	Cloud and Sunâ€glint statistics derived from GOES and MODIS observations over the Intraâ€Americas Sea for GEOâ€CAPE mission planning. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1725-1745.	3.3	19
30	Spaceborne detection of localized carbon dioxide sources. Science, 2017, 358, .	12.6	127
31	An Assessment of Ground Level and Free Tropospheric Ozone Over California and Nevada. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,089.	3.3	9
32	Lower-tropospheric CO ₂ from near-infrared ACOS-GOSAT observations. Atmospheric Chemistry and Physics, 2017, 17, 5407-5438.	4.9	15
33	A new non-resonant laser-induced fluorescence instrument for the airborne in situ measurement of formaldehyde. Atmospheric Measurement Techniques, 2017, 10, 4833-4844.	3.1	14
34	Methane emissions from aÂCalifornian landfill, determined from airborne remote sensing and in situ measurements. Atmospheric Measurement Techniques, 2017, 10, 3429-3452.	3.1	36
35	Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) <i>X</i> _{CO₂&ar measurements with TCCON. Atmospheric Measurement Techniques, 2017, 10, 2209-2238.}	np; #;; /sub8	&ar ap ,gt;
36	Intercomparability of X _{CO₂} and X _{CH₄} from the United States TCCON sites. Atmospheric Measurement Techniques, 2017, 10, 1481-1493.	3.1	16

LAURA T IRACI

#	Article	IF	CITATIONS
37	Emissions and topographic effects on column CO 2 () variations, with a focus on the Southern California Megacity. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7200-7215.	3.3	22
38	Bias corrections of GOSAT SWIR XCO ₂ and XCH ₄ with TCCON data and their evaluation using aircraft measurement data. Atmospheric Measurement Techniques, 2016, 9, 3491-3512.	3.1	40
39	Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON. Atmospheric Measurement Techniques, 2016, 9, 683-709.	3.1	80
40	Comparison of XH2O Retrieved from GOSAT Short-Wavelength Infrared Spectra with Observations from the TCCON Network. Remote Sensing, 2016, 8, 414.	4.0	20
41	Two-Year Comparison of Airborne Measurements of CO ₂ and CH ₄ With GOSAT at Railroad Valley, Nevada. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 4367-4375.	6.3	17
42	Investigating seasonal methane emissions in Northern California using airborne measurements and inverse modeling. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,753.	3.3	9
43	A New Instrumented Airborne Platform for Atmospheric Research. Bulletin of the American Meteorological Society, 2016, 97, 397-404.	3.3	20
44	Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities. Atmospheric Chemistry and Physics, 2015, 15, 4225-4239.	4.9	12
45	Revisiting the evidence of increasing springtime ozone mixing ratios in the free troposphere over western North America. Geophysical Research Letters, 2015, 42, 8719-8728.	4.0	69
46	Characterizing the impacts of vertical transport and photochemical ozone production on an exceedance area. Atmospheric Environment, 2015, 109, 342-350.	4.1	12
47	Investigating the influence of long-range transport on surface O3 in Nevada, USA, using observations from multiple measurement platforms. Science of the Total Environment, 2015, 530-531, 493-504.	8.0	10
48	Analyzing source apportioned methane in northern California during Discover-AQ-CA using airborne measurements and model simulations. Atmospheric Environment, 2014, 99, 248-256.	4.1	7
49	A Comparison of <italic>In Situ</italic> Aircraft Measurements of Carbon Dioxide and Methane to GOSAT Data Measured Over Railroad Valley Playa, Nevada, USA. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 7764-7774.	6.3	27
50	Assessing the role of alkaline soils on the carbon cycle at a playa site. Environmental Earth Sciences, 2013, 70, 1047-1056.	2.7	31
51	Airborne observations and modeling of springtime stratosphere-to-troposphere transport over California. Atmospheric Chemistry and Physics, 2013, 13, 12481-12494.	4.9	37
52	The United States' Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission. Bulletin of the American Meteorological Society, 2012, 93, 1547-1566.	3.3	118
53	Solubility of Acetic Acid and Trifluoroacetic Acid in Low-Temperature (207â^'245 K) Sulfuric Acid Solutions: Implications for the Upper Troposphere and Lower Stratosphere. Journal of Physical Chemistry A, 2011, 115, 4388-4396.	2.5	1
54	Water ice nucleation characteristics of JSC Mars-1 regolith simulant under simulated Martian atmospheric conditions. Journal of Geophysical Research, 2011, 116, .	3.3	12

LAURA T IRACI

#	Article	IF	CITATIONS
55	Carbon Dioxide and Methane at a Desert Site—A Case Study at Railroad Valley Playa, Nevada, USA. Atmosphere, 2011, 2, 702-714.	2.3	8
56	Water ice cloud formation on Mars is more difficult than presumed: Laboratory studies of ice nucleation on surrogate materials. Icarus, 2010, 210, 985-991.	2.5	37
57	Uptake of acetone, acetaldehyde and ethanol in cold sulfuric acid solutions containing organic material: Carbon accretion mechanisms. Atmospheric Environment, 2010, 44, 1145-1151.	4.1	7
58	The acid catalyzed nitration of methanol: formation of methyl nitrate via aerosol chemistry. Journal of Atmospheric Chemistry, 2007, 58, 253-266.	3.2	11
59	Uptake and Dissolution of Gaseous Ethanol in Sulfuric Acidâ€. Journal of Physical Chemistry A, 2006, 110, 6711-6717.	2.5	20
60	Uptake of hypobromous acid (HOBr) by aqueous sulfuric acid solutions: low-temperature solubility and reaction. Atmospheric Chemistry and Physics, 2005, 5, 1577-1587.	4.9	21
61	Heterogeneous chemistry involving methanol in tropospheric clouds. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	35
62	Dissolution, speciation, and reaction of acetaldehyde in cold sulfuric acid. Journal of Geophysical Research, 2004, 109, .	3.3	23
63	lce condensation on sulfuric acid tetrahydrate: Implications for polar stratospheric ice clouds. Atmospheric Chemistry and Physics, 2003, 3, 987-997.	4.9	29
64	Solubility of Methanol in Low-Temperature Aqueous Sulfuric Acid and Implications for Atmospheric Particle Composition. Journal of Physical Chemistry A, 2002, 106, 4054-4060.	2.5	43
65	Chemistry of the Cyclopentoxy and Cyclohexoxy Radicals at Subambient Temperatures. Journal of Physical Chemistry A, 2000, 104, 5072-5079.	2.5	56
66	Title is missing!. Journal of Atmospheric Chemistry, 1999, 33, 321-330.	3.2	56
67	Variation of the infrared spectra of nitric acid hydrates with formation conditions: Impact on PSC identification. Geophysical Research Letters, 1999, 26, 707-710.	4.0	26
68	Dissolution of sulfuric acid tetrahydrate at low temperatures and subsequent growth of nitric acid trihydrate. Journal of Geophysical Research, 1998, 103, 8491-8498.	3.3	30
69	Heterogeneous interaction of formaldehyde with cold sulfuric acid: Implications for the upper troposphere and lower stratosphere. Journal of Geophysical Research, 1997, 102, 16099-16107.	3.3	76
70	Laboratory studies of the formation of polar stratospheric clouds: Nitric acid condensation on thin sulfuric acid films. Journal of Geophysical Research, 1995, 100, 20969.	3.3	50
71	Growth of nitric acid hydrates on thin sulfuric acid films. Geophysical Research Letters, 1994, 21, 867-870.	4.0	39
72	Fourier transformâ€infrared studies of thin H ₂ SO ₄ /H ₂ O films: Formation, water uptake, and solidâ€liquid phase changes. Journal of Geophysical Research, 1993, 98, 20473-20481.	3.3	96