Seyed R Tabaei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3763826/publications.pdf

Version: 2024-02-01

43 papers

1,321 citations

³⁶¹⁴¹³
20
h-index

345221 36 g-index

44 all docs 44 docs citations

44 times ranked 1811 citing authors

#	Article	IF	CITATIONS
1	High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles. Science Advances, 2016, 2, e1501381.	10.3	191
2	Solvent-Assisted Lipid Bilayer Formation on Silicon Dioxide and Gold. Langmuir, 2014, 30, 10363-10373.	3.5	134
3	Fluorescence Blinking, Exciton Dynamics, and Energy Transfer Domains in Single Conjugated Polymer Chains. Journal of the American Chemical Society, 2008, 130, 7042-7051.	13.7	123
4	Self-Assembly Formation of Lipid Bilayer Coatings on Bare Aluminum Oxide: Overcoming the Force of Interfacial Water. ACS Applied Materials & Samp; Interfaces, 2015, 7, 959-968.	8.0	68
5	Solvent-Assisted Lipid Self-Assembly at Hydrophilic Surfaces: Factors Influencing the Formation of Supported Membranes. Langmuir, 2015, 31, 3125-3134.	3.5	66
6	Single Vesicle Analysis Reveals Nanoscale Membrane Curvature Selective Pore Formation in Lipid Membranes by an Antiviral α-Helical Peptide. Nano Letters, 2012, 12, 5719-5725.	9.1	56
7	Formation of Cholesterol-Rich Supported Membranes Using Solvent-Assisted Lipid Self-Assembly. Langmuir, 2014, 30, 13345-13352.	3.5	53
8	Self-assembly formation of multiple DNA-tethered lipid bilayers. Journal of Structural Biology, 2009, 168, 200-206.	2.8	39
9	Controlling the Formation of Phospholipid Monolayer, Bilayer, and Intact Vesicle Layer on Graphene. ACS Applied Materials & Diterfaces, 2016, 8, 11875-11880.	8.0	37
10	Refractive-Index-Based Screening of Membrane-Protein-Mediated Transfer across Biological Membranes. Biophysical Journal, 2010, 99, 124-133.	0.5	35
11	Single Lipid Vesicle Assay for Characterizing Single-Enzyme Kinetics of Phospholipid Hydrolysis in a Complex Biological Fluid. Journal of the American Chemical Society, 2013, 135, 14151-14158.	13.7	30
12	Correlation between Membrane Partitioning and Functional Activity in a Single Lipid Vesicle Assay Establishes Design Guidelines for Antiviral Peptides. Small, 2015, 11, 2372-2379.	10.0	30
13	Fabrication of charged membranes by the solvent-assisted lipid bilayer (SALB) formation method on SiO ₂ and Al ₂ O ₃ . Physical Chemistry Chemical Physics, 2015, 17, 11546-11552.	2.8	30
14	A Numerical Study on the Effect of Particle Surface Coverage on the Quartz Crystal Microbalance Response. Analytical Chemistry, 2018, 90, 2238-2245.	6.5	28
15	Observation of Stripe Superstructure in the β-Two-Phase Coexistence Region of Cholesterol–Phospholipid Mixtures in Supported Membranes. Journal of the American Chemical Society, 2014, 136, 16962-16965.	13.7	27
16	A model derived from hydrodynamic simulations for extracting the size of spherical particles from the quartz crystal microbalance. Analyst, The, 2017, 142, 3370-3379.	3.5	26
17	Quartz Crystal Microbalance Model for Quantitatively Probing the Deformation of Adsorbed Particles at Low Surface Coverage. Analytical Chemistry, 2017, 89, 11711-11718.	6.5	26
18	Optimizing the Performance of Supported Lipid Bilayers as Cell Culture Platforms Based on Extracellular Matrix Functionalization. ACS Omega, 2017, 2, 2395-2404.	3.5	23

#	Article	IF	Citations
19	Spheroid Formation of Hepatocarcinoma Cells in Microwells: Experiments and Monte Carlo Simulations. PLoS ONE, 2016, 11, e0161915.	2.5	21
20	Dynamic Cellular Interactions with Extracellular Matrix Triggered by Biomechanical Tuning of Lowâ€Rigidity, Supported Lipid Membranes. Advanced Healthcare Materials, 2017, 6, 1700243.	7.6	21
21	Hydrolysis of a Lipid Membrane by Single Enzyme Molecules: Accurate Determination of Kinetic Parameters. Angewandte Chemie - International Edition, 2015, 54, 1022-1026.	13.8	20
22	Cholesterol-Enriched Domain Formation Induced by Viral-Encoded, Membrane-Active Amphipathic Peptide. Biophysical Journal, 2016, 110, 176-187.	0.5	20
23	A phenomenological model of the solvent-assisted lipid bilayer formation method. Physical Chemistry Chemical Physics, 2016, 18, 24157-24163.	2.8	19
24	Hybrid vesicles as intracellular reactive oxygen species and nitric oxide generators. Nanoscale, 2019, 11, 11530-11541.	5.6	18
25	Solute transport on the sub 100 ms scale across the lipid bilayer membrane of individual proteoliposomes. Lab on A Chip, 2012, 12, 4635.	6.0	15
26	Biomembrane Fabrication by the Solvent-assisted Lipid Bilayer (SALB) Method. Journal of Visualized Experiments, 2015 , , .	0.3	15
27	Comparative assessment of the efficiencies of gas sparging and back-flushing to improve yeast microfiltration using tubular ceramic membranes. Desalination, 2007, 217, 93-99.	8.2	14
28	Supported lipid bilayer repair mediated by AH peptide. Physical Chemistry Chemical Physics, 2016, 18, 3040-3047.	2.8	14
29	Förster Resonance Energy Transfer Nanoplatform Based on Recognition-Induced Fusion/Fission of DNA Mixed Micelles for Nucleic Acid Sensing. ACS Nano, 2021, 15, 8517-8524.	14.6	14
30	Hydrodynamic Propulsion of Liposomes Electrostatically Attracted to a Lipid Membrane Reveals Size-Dependent Conformational Changes. ACS Nano, 2016, 10, 8812-8820.	14.6	12
31	Spatiotemporal dynamics of solvent-assisted lipid bilayer formation. Physical Chemistry Chemical Physics, 2015, 17, 31145-31151.	2.8	11
32	Multistep Compositional Remodeling of Supported Lipid Membranes by Interfacially Active Phosphatidylinositol Kinases. Analytical Chemistry, 2016, 88, 5042-5045.	6.5	11
33	Probing Membrane Viscosity and Interleaflet Friction of Supported Lipid Bilayers by Tracking Electrostatically Adsorbed, Nano‧ized Vesicles. Small, 2016, 12, 6338-6344.	10.0	10
34	Fabrication of Inverted Colloidal Crystal Poly(ethylene glycol) Scaffold: A Three-dimensional Cell Culture Platform for Liver Tissue Engineering. Journal of Visualized Experiments, 2016, , .	0.3	10
35	Hybrid Biomimetic Interfaces Integrating Supported Lipid Bilayers with Decellularized Extracellular Matrix Components. Langmuir, 2018, 34, 3507-3516.	3.5	10
36	Size-dependent, stochastic nature of lipid exchange between nano-vesicles and model membranes. Nanoscale, 2016, 8, 13513-13520.	5.6	9

#	Article	IF	CITATIONS
37	Membrane attack complex formation on a supported lipid bilayer: initial steps towards a CARPA predictor nanodevice. European Journal of Nanomedicine, 2015, 7, .	0.6	8
38	Lamellar sheet exfoliation of single lipid vesicles by a membrane-active peptide. Chemical Communications, 2015, 51, 10272-10275.	4.1	8
39	Brownian Dynamics of Electrostatically Adhering Small Vesicles to a Membrane Surface Induces Domains and Probes Viscosity. Langmuir, 2016, 32, 5445-5450.	3.5	8
40	Effect of Glucose on the Mobility of Membrane-Adhering Liposomes. Langmuir, 2018, 34, 503-511.	3.5	4
41	Cell Adhesion: Dynamic Cellular Interactions with Extracellular Matrix Triggered by Biomechanical Tuning of Lowâ€Rigidity, Supported Lipid Membranes (Adv. Healthcare Mater. 10/2017). Advanced Healthcare Materials, 2017, 6, .	7.6	1
42	Antiviral Agents: Correlation between Membrane Partitioning and Functional Activity in a Single Lipid Vesicle Assay Establishes Design Guidelines for Antiviral Peptides (Small 20/2015). Small, 2015, 11, 2464-2464.	10.0	0
43	Particle Tracking: Probing Membrane Viscosity and Interleaflet Friction of Supported Lipid Bilayers by Tracking Electrostatically Adsorbed, Nano-Sized Vesicles (Small 46/2016). Small, 2016, 12, 6304-6304.	10.0	0