Rui Xie

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3763808/rui-xie-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

5,693 67 155 43 h-index g-index citations papers 6,602 167 7.6 5.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
155	A novel chemosensor for sensitive and facile detection of strontium ions based on ion-imprinted hydrogels modified with guanosine derivatives. <i>Journal of Hazardous Materials</i> , 2022 , 421, 126801	12.8	3
154	Pseudo Polyampholytes with Sensitively Ion-Responsive Conformational Transition Based on Positively Charged Host-Guest Complexes <i>Macromolecular Rapid Communications</i> , 2022 , e2200127	4.8	0
153	Functional Capsules Encapsulating Molecular-Recognizable Nanogels for Facile Removal of Organic Micro-Pollutants from Water. <i>Engineering</i> , 2021 , 7, 636-636	9.7	3
152	Magnetically Assembled Photonic Crystal Gels with Wide Thermochromic Range and High Sensitivity. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2100200	4.8	3
151	Injectable Temperature/Glucose Dual-Responsive Hydrogels for Controlled Release of Insulin. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 8147-8158	3.9	3
150	Facile Fabrication of Photocatalyst-Immobilized Gel Beads with Interconnected Macropores for the Efficient Removal of Pollutants in Water. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 87	6 2 -877	5 ³
149	Novel Multifunctional Stimuli-Responsive Nanoparticles for Synergetic Chemo-Photothermal Therapy of Tumors. <i>ACS Applied Materials & Distributed Synergetic Chemo-Photothermal Synergetic Chemo-Photothermal Chemo-Phototherma</i>	9.5	14
148	Visual detection of trace lead(II) using a forward osmosis-driven device loaded with ion-responsive nanogels. <i>Journal of Hazardous Materials</i> , 2021 , 404, 124157	12.8	3
147	Designable Micro-/Nano-Structured Smart Polymeric Materials Advanced Materials, 2021 , e2107877	24	5
146	Microfluidic Fabrication of Structure-Controlled Chitosan Microcapsules via Interfacial Cross-Linking of Droplet Templates. <i>ACS Applied Materials & Description of Description (Control of Description)</i> 12, 57514-57525	9.5	10
145	Smart Hydrogel Grating Immunosensors for Highly Selective and Sensitive Detection of Human-IgG. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 10469-10475	3.9	7
144	Antifouling membranes with bi-continuous porous structures and high fluxes prepared by vapor-induced phase separation. <i>Journal of Membrane Science</i> , 2020 , 611, 118256	9.6	11
143	Hybrid Graphene Oxide/Laponite Layered Membranes with Stable Two-Dimensional Nanochannels for Efficient Separations in Aqueous Environments. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 12441-12450	3.9	4
142	Simple and Continuous Fabrication of Self-Propelled Micromotors with Photocatalytic Metal-Organic Frameworks for Enhanced Synergistic Environmental Remediation. <i>ACS Applied Materials & Discrete Americals (Materials & Discrete Americals)</i> 12, 35120-35131	9.5	29
141	A Novel Strategy to Fabricate Cation-Cross-linked Graphene Oxide Membrane with High Aqueous Stability and High Separation Performance. <i>ACS Applied Materials & Description</i> , 12, 56269-56	280 ⁵	14
140	Capsule membranes encapsulated with smart nanogels for facile detection of trace lead(II) ions in water. <i>Journal of Membrane Science</i> , 2020 , 613, 118523	9.6	8
139	Smart Hydrogel Gratings for Sensitive, Facile, and Rapid Detection of Ethanol Concentration. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 17833-17841	3.9	10

(2018-2019)

Transparent thermo-responsive poly(N-isopropylacrylamide)-l-poly(ethylene glycol)acrylamide conetwork hydrogels with rapid deswelling response. <i>New Journal of Chemistry</i> , 2019 , 43, 9507-9515	3.6	10
Preparation and Characterization of Novel Low-Temperature/pH Dual-Responsive Poly(N-isopropylacrylamide-co-1H-benzimidazolyl-ethyl acrylate) Copolymers. <i>Macromolecular Chemistry and Physics</i> , 2019 , 220, 1900123	2.6	1
Effects of hydrophilicity of blended submicrogels on the microstructure and performance of thermo-responsive membranes. <i>Journal of Membrane Science</i> , 2019 , 584, 202-215	9.6	8
A novel membrane with ion-recognizable copolymers in graphene-based nanochannels for facilitated transport of potassium ions. <i>Journal of Membrane Science</i> , 2019 , 591, 117345	9.6	10
Chitosan microcapsule membranes with nanoscale thickness for controlled release of drugs. Journal of Membrane Science, 2019 , 590, 117275	9.6	25
Designable Polymeric Microparticles from Droplet Microfluidics for Controlled Drug Release. <i>Advanced Materials Technologies</i> , 2019 , 4, 1800687	6.8	41
A novel smart membrane with ion-recognizable nanogels as gates on interconnected pores for simple and rapid detection of trace lead(II) ions in water. <i>Journal of Membrane Science</i> , 2019 , 575, 28-37	, 9.6	20
Bubble-Propelled Hierarchical Porous Micromotors from Evolved Double Emulsions. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 1590-1600	3.9	17
CO2-responsive poly(N,N-dimethylaminoethyl methacrylate) hydrogels with fast responsive rate. Journal of the Taiwan Institute of Chemical Engineers, 2019 , 94, 135-142	5.3	8
A Novel Thermoresponsive Catalytic Membrane with Multiscale Pores Prepared via Vapor-Induced Phase Separation. <i>Small</i> , 2018 , 14, e1703650	11	17
A Simple Device Based on Smart Hollow Microgels for Facile Detection of Trace Lead(II) Ions. <i>ChemPhysChem</i> , 2018 , 19, 2025-2036	3.2	6
Controllable synthesis of MnO2 nanostructures anchored on graphite foam with different morphologies for a high-performance asymmetric supercapacitor. <i>CrystEngComm</i> , 2018 , 20, 1690-1697	3.3	31
Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions. <i>Journal of Membrane Science</i> , 2018 , 550, 208-218	9.6	65
Dual pH-responsive smart gating membranes. <i>Journal of Membrane Science</i> , 2018 , 555, 20-29	9.6	27
Facile Fabrication of Bubble-Propelled Micromotors Carrying Nanocatalysts for Water Remediation. <i>Industrial & Damp; Engineering Chemistry Research</i> , 2018 , 57, 4562-4570	3.9	21
Trojan-Horse-Like Stimuli-Responsive Microcapsules. <i>Advanced Science</i> , 2018 , 5, 1700960	13.6	57
Effect of Oxidized-Group-Supported Lamellar Distance on Stability of Graphene-Based Membranes in Aqueous Solutions. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 9439-9447	3.9	17
Smart hydrogels: Network design and emerging applications. <i>Canadian Journal of Chemical Engineering</i> , 2018 , 96, 2100-2114	2.3	16
	conetwork hydrogels with rapid deswelling response. New Journal of Chemistry, 2019, 43, 9507-9515 Preparation and Characterization of Novel Low-Temperature/pH Dual-Responsive Poly(N-isopropylacylamide-o-1H-bearindazolyl-ethyl acrylate) Copolymers. Macromolecular Chemistry and Physics, 2019, 220, 1900123 Effects of hydrophilicity of blended submicrogels on the microstructure and performance of thermo-responsive membranes. Journal of Membrane Science, 2019, 584, 202-215 A novel membrane with ion-recognizable copolymers in graphene-based nanochannels for facilitated transport of potassium ions. Journal of Membrane Science, 2019, 591, 117345 Chitosan microcapsule membranes with nanoscale thickness for controlled release of drugs. Journal of Membrane Science, 2019, 590, 117275 Designable Polymeric Microparticles from Droplet Microfluidics for Controlled Drug Release. Advanced Materials Technologies, 2019, 4, 1800687 A novel smart membrane with ion-recognizable nanogels as gates on interconnected pores for simple and rapid detection of trace lead(II) ions in water. Journal of Membrane Science, 2019, 575, 28-37 Bubble-Propelled Hierarchical Porous Micromotors from Evolved Double Emulsions. Industrial & Samp: Engineering Chemistry Research, 2019, 58, 1590-1600 CO2-responsive poly(N,N-dimethylaminoethyl methacrylate) hydrogels with fast responsive rate. Journal of the Taiwan Institute of Chemical Engineers, 2019, 94, 135-142 A Novel Thermoresponsive Catalytic Membrane with Multiscale Pores Prepared via Vapor-Induced Phase Separation. Small, 2018, 14, e1703650 A Simple Device Based on Smart Hollow Microgels for Facile Detection of Trace Lead(II) lons. ChemPhysChem, 2018, 19, 2025-2036 Controllable synthesis of MnO2 nanostructures anchored on graphite foam with different morphologies for a high-performance asymmetric supercapacitor. CrystEngComm, 2018, 20, 1690-1697 Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions. Journal of Membrane Science, 2018, 550,	conetwork hydrogels with rapid deswelling response. New Journal of Chemistry, 2019, 43, 9507-9515 3-6 Preparation and Characterization of Novel Low-Temperature/pH Dual-Responsive Poly(N-Isopropylacrylamide-co-1H-bearximidazolyl-ethyl acrylate) Copolymers. Macromolecular Chemistry and Physics, 2019, 220, 1900123 Effects of hydrophilicity of blended submicrogels on the microstructure and performance of thermo-responsive membranes. Journal of Membrane Science, 2019, 584, 202-215 9-6 A novel membrane with ion-recognizable copolymers in graphene-based nanochannels for facilitated transport of potassium ions. Journal of Membrane Science, 2019, 591, 117345 Chitosan microcapsule membranes with nanoscale thickness for controlled release of drugs. Journal of Membrane Science, 2019, 590, 117275 Pesignable Polymeric Microparticles from Droplet Microfluidics for Controlled Drug Release. Advanced Materials Technologies, 2019, 4, 1800687 A novel smart membrane with ion-recognizable nanogels as gates on interconnected pores for simple and rapid detection of trace lead(II) ions in water. Journal of Membrane Science, 2019, 575, 28-37 9-6 Bubble Propelled Hierarchical Porous Micromotors from Evolved Double Emulsions. Industrial Xamp: Engineering Chemistry Research, 2019, 581, 1590-1600 CO2-responsive poly(N,N-dimethylaminoethyl methacrylate) hydrogels with fast responsive rate. Journal of the Taiwan Institute of Chemical Engineers, 2019, 94, 135-142 A Novel Thermoresponsive Catalytic Membrane with Multiscale Pores Prepared via Vapor-Induced Phase Separation. Small, 2018, 14, e1703650 A Simple Device Based on Smart Hollow Microgels for Facile Detection of Trace Lead(II) lons. ChemPhysChem, 2018, 19, 2025-2036 Controllable synthesis of MnO2 nanostructures anchored on graphite foam with different morphologies for a high-performance asymmetric supercapacitor. CrystEngComm, 2018, 20, 1690-1697 3-3 Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions. Journal of Membra

120	Preparation of high strength poly(vinylidene fluoride) porous membranes with cellular structure via vapor-induced phase separation. <i>Journal of Membrane Science</i> , 2018 , 549, 151-164	9.6	43
119	Nanostructured Thermoresponsive Surfaces Engineered via Stable Immobilization of Smart Nanogels with Assistance of Polydopamine. <i>ACS Applied Materials & District Acros</i> , 2018, 10, 44092-44	1845	14
118	Ultrasensitive diffraction gratings based on smart hydrogels for highly selective and rapid detection of trace heavy metal ions. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 11356-11367	7.1	26
117	Microfluidic fabrication of corellheath composite phase change microfibers with enhanced thermal conductive property. <i>Journal of Materials Science</i> , 2018 , 53, 15769-15783	4.3	10
116	Nanocomposite smart hydrogels with improved responsiveness and mechanical properties: A mini review. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2018 , 56, 1306-1313	2.6	36
115	Controllable Microfluidic Fabrication of Magnetic Hybrid Microswimmers with Hollow Helical Structures. <i>Industrial & Discours amp; Engineering Chemistry Research</i> , 2018 , 57, 9430-9438	3.9	19
114	Monodisperse Na2SO4[10H2[email[protected]2 Microparticles against Supercooling and Phase Separation during Phase Change for Efficient Energy Storage. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2017 , 56, 3297-3308	3.9	22
113	Reduced Graphene Oxide-Containing Smart Hydrogels with Excellent Electro-Response and Mechanical Properties for Soft Actuators. <i>ACS Applied Materials & District Actuations</i> , 9, 15758-15767	. 9.5	154
112	Facile Fabrication of Composite Membranes with Dual Thermo- and pH-Responsive Characteristics. <i>ACS Applied Materials & Distributed & Dist</i>	9.5	30
111	Polymersomes with Rapid K-Triggered Drug-Release Behaviors. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 19258-19268	9.5	19
110	K -Responsive Block Copolymer Micelles for Targeted Intracellular Drug Delivery. <i>Macromolecular Bioscience</i> , 2017 , 17, 1700143	5.5	8
109	Novel Biocompatible Thermoresponsive Poly(N-vinyl Caprolactam)/Clay Nanocomposite Hydrogels with Macroporous Structure and Improved Mechanical Characteristics. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 21979-21990	9.5	41
108	Novel Smart Microreactors Equipped with Responsive Catalytic Nanoparticles on Microchannels. <i>ACS Applied Materials & Discrete Material</i>	9.5	14
107	Controllable Microfluidic Fabrication of Microstructured Materials from Nonspherical Particles to Helices. <i>Macromolecular Rapid Communications</i> , 2017 , 38, 1700429	4.8	14
106	A Novel Poly(N-Isopropylacrylamide-co-acryloylamidobenzo-12-crown-4) Microgel with Rapid Stimuli-Responsiveness for Molecule-Specific Adsorption of Ecyclodextrin. <i>Macromolecular Chemistry and Physics</i> , 2017 , 218, 1700216	2.6	5
105	Gamma-Cyclodextrin-Recognition-Responsive Characteristics of Poly(N-isopropylacrylamide)-Based Hydrogels with Benzo-12-crown-4 Units as Signal Receptors. <i>Macromolecular Chemistry and Physics</i> , 2017 , 218, 1600386	2.6	4
104	Ion-recognizable hydrogels for efficient removal of cesium ions from aqueous environment. <i>Journal of Hazardous Materials</i> , 2017 , 323, 632-640	12.8	65
103	Controllable microfluidic strategies for fabricating microparticles using emulsions as templates. <i>Particuology</i> , 2016 , 24, 18-31	2.8	43

(2015-2016)

1	02	Effects of fabrication conditions on the microstructures and performances of smart gating membranes with in situ assembled nanogels as gates. <i>Journal of Membrane Science</i> , 2016 , 519, 32-44	9.6	30
1	01	Microfluidic generation of hollow Ca-alginate microfibers. <i>Lab on A Chip</i> , 2016 , 16, 2673-81	7.2	41
1	00	Diffusional permeability characteristics of positively K+-responsive membranes caused by spontaneously changing membrane pore size and surface wettability. <i>Journal of Membrane Science</i> , 2016 , 497, 328-338	9.6	16
9	9	Controllable Multicompartmental Capsules with Distinct Cores and Shells for Synergistic Release. <i>ACS Applied Materials & Distinct Cores and Shells for Synergistic Release.</i>	9.5	37
9	8	Ultrasensitive microchip based on smart microgel for real-time online detection of trace threat analytes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 202	2 1 185	34
9	7	An easily recoverable thermo-sensitive polyelectrolyte as draw agent for forward osmosis process. <i>Chinese Journal of Chemical Engineering</i> , 2016 , 24, 86-93	3.2	14
9	6	Stimuli-responsive smart gating membranes. <i>Chemical Society Reviews</i> , 2016 , 45, 460-75	58.5	236
9	5	Ethanol-Responsive Poly(Vinylidene Difluoride) Membranes with Nanogels as Functional Gates. <i>Chemical Engineering and Technology</i> , 2016 , 39, 841-848	2	4
9	4	Graphene Oxide Membranes with Strong Stability in Aqueous Solutions and Controllable Lamellar Spacing. <i>ACS Applied Materials & Acs Applied </i>	9.5	107
9	3	Online monitoring of ethanol concentration using a responsive microfluidic membrane device. <i>Analytical Methods</i> , 2016 , 8, 4028-4036	3.2	6
9	2	Core-Shell Chitosan Microcapsules for Programmed Sequential Drug Release. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 10524-34	9.5	86
9	1	Fabrication of a thermo-responsive membrane with cross-linked smart gates via a <code>grafting-tollmethod</code> . <i>RSC Advances</i> , 2016 , 6, 45428-45433	3.7	12
9	Ю	Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction. <i>Acta Biomaterialia</i> , 2016 , 38, 153-62	10.8	56
8	9	The microfluidic synthesis of composite hollow microfibers for K-responsive controlled release based on a host-guest system. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 3925-3935	7.3	16
8	8	Spontaneous transfer of droplets across microfluidic laminar interfaces. <i>Lab on A Chip</i> , 2016 , 16, 4326-4	3,32	10
8	7	On-chip thermo-triggered coalescence of controllable Pickering emulsion droplet pairs. <i>RSC Advances</i> , 2016 , 6, 64182-64192	3.7	21
8	6	Smart Hydrogels with Inhomogeneous Structures Assembled Using Nanoclay-Cross-Linked Hydrogel Subunits as Building Blocks. <i>ACS Applied Materials & District Amplied Materials & District Ampli</i>	9.5	82
8	5	Microfluidic Fabrication of Bio-Inspired Microfibers with Controllable Magnetic Spindle-Knots for 3D Assembly and Water Collection. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 17471-81	9.5	76

84	Monodisperse erythrocyte-sized and acid-soluble chitosan microspheres prepared via electrospraying. <i>RSC Advances</i> , 2015 , 5, 34243-34250	3.7	21
83	Uniform Microparticles with Controllable Highly Interconnected Hierarchical Porous Structures. <i>ACS Applied Materials & Description of the ACS Applied Mat</i>	9.5	43
82	Near-Infrared Light-Responsive Poly(N-isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels with Ultrahigh Tensibility. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 27289-98	9.5	148
81	Fabrication of glass-based microfluidic devices with dry film photoresists as pattern transfer masks for wet etching. <i>RSC Advances</i> , 2015 , 5, 5638-5646	3.7	42
80	pH-responsive controlled release characteristics of solutes with different molecular weights diffusing across membranes of Ca-alginate/protamine/silica hybrid capsules. <i>Journal of Membrane Science</i> , 2015 , 474, 233-243	9.6	22
79	Smart gating membranes with in situ self-assembled responsive nanogels as functional gates. <i>Scientific Reports</i> , 2015 , 5, 14708	4.9	34
78	Hydrogel Walkers with Electro-Driven Motility for Cargo Transport. <i>Scientific Reports</i> , 2015 , 5, 13622	4.9	81
77	Enhanced H-filter based on FBrDs-Lindqvist effect for efficient and robust dialysis without membrane. <i>Biomicrofluidics</i> , 2015 , 9, 044112	3.2	2
76	Microfluidic fabrication and thermal characteristics of coreEhell phase change microfibers with high paraffin content. <i>Applied Thermal Engineering</i> , 2015 , 87, 471-480	5.8	19
75	Fabrication of nanofibers with phase-change core and hydrophobic shell, via coaxial electrospinning using nontoxic solvent. <i>Journal of Materials Science</i> , 2015 , 50, 5729-5738	4.3	37
74	Microfluidic fabrication of chitosan microfibers with controllable internals from tubular to peapod-like structures. <i>RSC Advances</i> , 2015 , 5, 928-936	3.7	46
73	A novel, smart microsphere with K(+)-induced shrinking and aggregating properties based on a responsive host-guest system. <i>ACS Applied Materials & Discrete Amplied & Discrete Amplied & Disc</i>	9.5	16
72	A facile and controllable method to encapsulate phase change materials with non-toxic and biocompatible chemicals. <i>Applied Thermal Engineering</i> , 2014 , 70, 817-826	5.8	21
71	Smart microcapsules for direction-specific burst release of hydrophobic drugs. <i>RSC Advances</i> , 2014 , 4, 46568-46575	3.7	19
70	Visual detection of lead(II) using a simple device based on P(NIPAM-co-B18C6Am) hydrogel. <i>RSC Advances</i> , 2014 , 4, 26030-26037	3.7	11
69	Monodisperse and fast-responsive poly(N-isopropylacrylamide) microgels with open-celled porous structure. <i>Langmuir</i> , 2014 , 30, 1455-64	4	40
68	Beta-cyclodextrin-based molecular-recognizable smart microcapsules for controlled release. <i>Journal of Materials Science</i> , 2014 , 49, 6862-6871	4.3	10
67	Novel intestinal-targeted Ca-alginate-based carrier for pH-responsive protection and release of lactic acid bacteria. <i>ACS Applied Materials & Date of the faces</i> , 2014 , 6, 5962-70	9.5	59

(2013-2014)

66	Multi-Stimuli-Responsive Microcapsules for Adjustable Controlled-Release. <i>Advanced Functional Materials</i> , 2014 , 24, 3312-3323	15.6	115
65	pH-responsive poly(ether sulfone) composite membranes blended with amphiphilic polystyrene-block-poly(acrylic acid) copolymers. <i>Journal of Membrane Science</i> , 2014 , 450, 162-173	9.6	72
64	Visual detection of methanol in alcoholic beverages using alcohol-responsive poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) copolymers as indicators. <i>RSC Advances</i> , 2014 , 4, 61711-61721	3.7	8
63	Macromol. Rapid Commun. 14/2014. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 1308-1308	4.8	
62	Ethanol-responsive characteristics of polyethersulfone composite membranes blended with poly(N-isopropylacrylamide) nanogels. <i>Journal of Applied Polymer Science</i> , 2014 , 131,	2.9	50
61	Drug Delivery: Multi-Stimuli-Responsive Microcapsules for Adjustable Controlled-Release (Adv. Funct. Mater. 22/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 3290-3290	15.6	3
60	Multiple emulsion formation from controllable drop pairs in microfluidics. <i>Microfluidics and Nanofluidics</i> , 2014 , 17, 967-972	2.8	13
59	Alginate/protamine/silica hybrid capsules with ultrathin membranes for laccase immobilization. <i>AICHE Journal</i> , 2013 , 59, 380-389	3.6	29
58	Hydrogel-based microactuators with remote-controlled locomotion and fast Pb2+-response for micromanipulation. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 7219-26	9.5	21
57	Halloysite Nanotube Composited Thermo-responsive Hydrogel System for Controlled-release. <i>Chinese Journal of Chemical Engineering</i> , 2013 , 21, 991-998	3.2	13
56	Gating membranes for water treatment: detection and removal of trace Pb2+ ions based on molecular recognition and polymer phase transition. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9659	13	59
55	Bio-inspired mini-eggs with pH-responsive membrane for enzyme immobilization. <i>Journal of Membrane Science</i> , 2013 , 429, 313-322	9.6	24
54	pH-responsive Ca-alginate-based capsule membranes with grafted poly(methacrylic acid) brushes for controllable enzyme reaction. <i>Chemical Engineering Journal</i> , 2013 , 232, 573-581	14.7	25
53	Microfluidic fabrication of monodisperse microcapsules for glucose-response at physiological temperature. <i>Soft Matter</i> , 2013 , 9, 4150	3.6	74
52	Hole-shell microparticles from controllably evolved double emulsions. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 8084-7	16.4	107
51	Portable diagnosis method of hyperkalemia using potassium-recognizable poly(N-isopropylacrylamide-co-benzo-15-crown-5-acrylamide) copolymers. <i>Analytical Chemistry</i> , 2013 , 85, 6477-84	7.8	26
50	Nano-structure construction of porous membranes by depositing nanoparticles for enhanced surface wettability. <i>Journal of Membrane Science</i> , 2013 , 427, 63-72	9.6	29
49	Titelbild: HoleBhell Microparticles from Controllably Evolved Double Emulsions (Angew. Chem. 31/2013). <i>Angewandte Chemie</i> , 2013 , 125, 8043-8043	3.6	

48	HoleBhell Microparticles from Controllably Evolved Double Emulsions. <i>Angewandte Chemie</i> , 2013 , 125, 8242-8245	3.6	6
47	Functional Microcapsules with Thermo-responsive Hydrogel Shells 2013 , 135-152		
46	Preparation and Properties of Monodisperse Thermo-responsive Microgels 2013 , 25-58		
45	Thermo-responsive monodisperse core-shell microspheres with PNIPAM core and biocompatible porous ethyl cellulose shell embedded with PNIPAM gates. <i>Journal of Colloid and Interface Science</i> , 2012 , 376, 97-106	9.3	57
44	Nano-gel containing thermo-responsive microspheres with fast response rate owing to hierarchical phase-transition mechanism. <i>Journal of Colloid and Interface Science</i> , 2012 , 377, 137-44	9.3	13
43	Comprehensive effects of metal ions on responsive characteristics of P(NIPAM-co-B18C6Am). <i>Journal of Physical Chemistry B</i> , 2012 , 116, 5527-36	3.4	41
42	Conversion of alcoholic concentration variations into mechanical force via core-shell capsules. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 974-9	3.4	21
41	Regulation of Critical Ethanol Response Concentrations of Ethanol-Responsive Smart Gating Membranes. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 9554-9563	3.9	19
40	Positively K+-Responsive Membranes with Functional Gates Driven by Host © uest Molecular Recognition. <i>Advanced Functional Materials</i> , 2012 , 22, 4742-4750	15.6	64
39	Microfluidic Preparation of Multicompartment Microcapsules for Isolated Co-encapsulation and Controlled Release of Diverse Components. <i>International Journal of Nonlinear Sciences and Numerical Simulation</i> , 2012 , 13,	1.8	16
38	Smart Membranes: Positively K+-Responsive Membranes with Functional Gates Driven by HostQuest Molecular Recognition (Adv. Funct. Mater. 22/2012). <i>Advanced Functional Materials</i> , 2012 , 22, 4741-4741	15.6	1
37	Simple and cheap microfluidic devices for the preparation of monodisperse emulsions. <i>Lab on A Chip</i> , 2011 , 11, 3963-9	7.2	68
36	Stimuli-responsive Membranes: Smart Tools for Controllable Mass-transfer and Separation Processes. <i>Chinese Journal of Chemical Engineering</i> , 2011 , 19, 891-903	3.2	51
35	K(+)-recognition capsules with squirting release mechanisms. <i>Chemical Communications</i> , 2011 , 47, 1228	3558	49
34	Monodisperse core-shell chitosan microcapsules for pH-responsive burst release of hydrophobic drugs. <i>Soft Matter</i> , 2011 , 7, 4821	3.6	129
33	Novel calcium-alginate capsules with aqueous core and thermo-responsive membrane. <i>Journal of Colloid and Interface Science</i> , 2011 , 353, 61-8	9.3	40
32	Novel cationic pH-responsive poly(N,N-dimethylaminoethyl methacrylate) microcapsules prepared by a microfluidic technique. <i>Journal of Colloid and Interface Science</i> , 2011 , 357, 101-8	9.3	41
31	Smart thermo-triggered squirting capsules for nanoparticle delivery. <i>Soft Matter</i> , 2010 , 6, 3759	3.6	108

(2008-2010)

30	Phase transition behaviors of poly(N-isopropylacrylamide) microgels induced by tannic acid. <i>Journal of Colloid and Interface Science</i> , 2010 , 343, 168-75	9.3	15
29	Monodisperse microspheres with poly(N-isopropylacrylamide) core and poly(2-hydroxyethyl methacrylate) shell. <i>Journal of Colloid and Interface Science</i> , 2010 , 346, 361-9	9.3	19
28	Smart responsive microcapsules capable of recognizing heavy metal ions. <i>Journal of Colloid and Interface Science</i> , 2010 , 349, 512-8	9.3	43
27	Gating characteristics of thermo-responsive and molecular-recognizable membranes based on poly(N-isopropylacrylamide) and Ecyclodextrin. <i>Journal of Membrane Science</i> , 2010 , 355, 142-150	9.6	40
26	A thermo-responsive affinity membrane with nano-structured pores and grafted poly(N-isopropylacrylamide) surface layer for hydrophobic adsorption. <i>Journal of Membrane Science</i> , 2010 , 349, 258-267	9.6	52
25	A novel ion-imprinted hydrogel for recognition of potassium ions with rapid response. <i>Polymers for Advanced Technologies</i> , 2010 , 22, n/a-n/a	3.2	33
24	Biodegradable 'intelligent' materials in response to chemical stimuli for biomedical applications. Expert Opinion on Therapeutic Patents, 2009 , 19, 683-96	6.8	21
23	A novel thermo-induced self-bursting microcapsule with magnetic-targeting property. <i>ChemPhysChem</i> , 2009 , 10, 2405-9	3.2	59
22	Temperature-dependent molecular-recognizable membranes based on poly(N-isopropylacrylamide) and Eyclodextrin. <i>Journal of Membrane Science</i> , 2009 , 326, 618-626	9.6	40
21	Lower critical solution temperatures of thermo-responsive poly(N-isopropylacrylamide) copolymers with racemate or single enantiomer groups. <i>Polymer International</i> , 2009 , 58, 202-208	3.3	7
20	Thermo-responsive gating membranes with controllable length and density of poly(N-isopropylacrylamide) chains grafted by ATRP method. <i>Journal of Membrane Science</i> , 2009 , 337, 310-317	9.6	88
19	Effects of surface wettability and roughness of microchannel on flow behaviors of thermo-responsive microspheres therein during the phase transition. <i>Journal of Colloid and Interface Science</i> , 2009 , 336, 162-70	9.3	15
18	Microfluidic preparation of monodisperse ethyl cellulose hollow microcapsules with non-toxic solvent. <i>Journal of Colloid and Interface Science</i> , 2009 , 336, 100-6	9.3	52
17	A microfluidic approach to fabricate monodisperse hollow or porous poly(HEMA-MMA) microspheres using single emulsions as templates. <i>Journal of Colloid and Interface Science</i> , 2009 , 336, 235-43	9.3	47
16	Dual thermo-responsive and ion-recognizable monodisperse microspheres. <i>Polymer</i> , 2009 , 50, 922-929	3.9	70
15	Rapid pH/temperature-responsive cationic hydrogels with dual stimuli-sensitive grafted side chains. <i>Polymer</i> , 2009 , 50, 2516-2525	3.9	87
14	Membranes and membrane processes for chiral resolution. <i>Chemical Society Reviews</i> , 2008 , 37, 1243-63	58.5	220
13	Poly(N-isopropylacrylamide)-based comb-type grafted hydrogel with rapid response to blood glucose concentration change at physiological temperature. <i>Polymers for Advanced Technologies</i> , 2008 , 19, 937-943	3.2	52

12	Molecular-Recognition-Induced Phase Transitions of Two Thermo-Responsive Polymers with Pendent Ecyclodextrin Groups. <i>Macromolecular Chemistry and Physics</i> , 2008 , 209, 204-211	2.6	32
11	A Thermoresponsive Membrane for Chiral Resolution. <i>Advanced Functional Materials</i> , 2008 , 18, 652-663	15.6	84
10	Preparation of monodisperse poly(N-isopropylacrylamide) microspheres and microcapsules via Shirasu-porous-glass membrane emulsification. <i>Desalination</i> , 2008 , 234, 184-194	10.3	24
9	Preparation and characterization of dual stimuli-responsive microcapsules with a superparamagnetic porous membrane and thermo-responsive gates. <i>Journal of Membrane Science</i> , 2008 , 321, 324-330	9.6	65
8	Thermosensitive Affinity Behavior of Poly(N-isopropylacrylamide) Hydrogels with ECyclodextrin Moieties. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 1511-1518	3.9	34
7	Preparation of thermo-responsive gating membranes with controllable response temperature. Journal of Membrane Science, 2007 , 289, 76-85	9.6	102
6	Preparation and enantiomer separation characteristics of chitosan/Ecyclodextrin composite membranes. <i>Journal of Membrane Science</i> , 2007 , 297, 262-270	9.6	67
5	Characterization of microstructure of poly(N-isopropylacrylamide)-grafted polycarbonate track-etched membranes prepared by plasma-graft pore-filling polymerization. <i>Journal of Membrane Science</i> , 2005 , 258, 157-166	9.6	90
4	Preparation of submicrometer-sized monodispersed thermoresponsive core-shell hydrogel microspheres. <i>Langmuir</i> , 2004 , 20, 5247-53	4	110
3	Study of SPG membrane emulsification processes for the preparation of monodisperse core-shell microcapsules. <i>Journal of Colloid and Interface Science</i> , 2003 , 265, 187-96	9.3	73
2	Microfluidic fabrication of hydrogel microparticles with MOF-armoured multi-enzymes for cascade biocatalytic reactions. <i>Reaction Chemistry and Engineering</i> ,	4.9	1
1	Hollow fiber membranes with knitted braid-like structures for process intensification via generation of Dean vortices. Separation Science and Technology 1-17	2.5	