List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3763808/publications.pdf Version: 2024-02-01

RIII XIE

#	Article	IF	CITATIONS
1	Stimuli-responsive smart gating membranes. Chemical Society Reviews, 2016, 45, 460-475.	18.7	334
2	Membranes and membrane processes for chiral resolution. Chemical Society Reviews, 2008, 37, 1243.	18.7	283
3	Reduced Graphene Oxide-Containing Smart Hydrogels with Excellent Electro-Response and Mechanical Properties for Soft Actuators. ACS Applied Materials & Interfaces, 2017, 9, 15758-15767.	4.0	207
4	Near-Infrared Light-Responsive Poly(<i>N</i> -isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels with Ultrahigh Tensibility. ACS Applied Materials & Interfaces, 2015, 7, 27289-27298.	4.0	182
5	Monodisperse core-shell chitosan microcapsules for pH-responsive burst release of hydrophobic drugs. Soft Matter, 2011, 7, 4821.	1.2	146
6	Multi‧timuliâ€Responsive Microcapsules for Adjustable Controlledâ€Release. Advanced Functional Materials, 2014, 24, 3312-3323.	7.8	141
7	Graphene Oxide Membranes with Strong Stability in Aqueous Solutions and Controllable Lamellar Spacing. ACS Applied Materials & Interfaces, 2016, 8, 15557-15566.	4.0	138
8	Core–Shell Chitosan Microcapsules for Programmed Sequential Drug Release. ACS Applied Materials & Interfaces, 2016, 8, 10524-10534.	4.0	132
9	Preparation of Submicrometer-Sized Monodispersed Thermoresponsive Coreâ^'Shell Hydrogel Microspheres. Langmuir, 2004, 20, 5247-5253.	1.6	122
10	Hole–Shell Microparticles from Controllably Evolved Double Emulsions. Angewandte Chemie - International Edition, 2013, 52, 8084-8087.	7.2	121
11	Smart thermo-triggered squirting capsules for nanoparticle delivery. Soft Matter, 2010, 6, 3759.	1.2	118
12	Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions. Journal of Membrane Science, 2018, 550, 208-218.	4.1	116
13	Preparation of thermo-responsive gating membranes with controllable response temperature. Journal of Membrane Science, 2007, 289, 76-85.	4.1	113
14	Hydrogel Walkers with Electro-Driven Motility for Cargo Transport. Scientific Reports, 2015, 5, 13622.	1.6	100
15	Thermo-responsive gating membranes with controllable length and density of poly(N-isopropylacrylamide) chains grafted by ATRP method. Journal of Membrane Science, 2009, 337, 310-317.	4.1	99
16	Characterization of microstructure of poly(-isopropylacrylamide)-grafted polycarbonate track-etched membranes prepared by plasma-graft pore-filling polymerization. Journal of Membrane Science, 2005, 258, 157-166.	4.1	98
17	Smart Hydrogels with Inhomogeneous Structures Assembled Using Nanoclay-Cross-Linked Hydrogel Subunits as Building Blocks. ACS Applied Materials & Interfaces, 2016, 8, 21721-21730.	4.0	98
18	Microfluidic fabrication of monodisperse microcapsules for glucose-response at physiological temperature. Soft Matter, 2013, 9, 4150.	1.2	95

#	Article	IF	CITATIONS
19	A Thermoresponsive Membrane for Chiral Resolution. Advanced Functional Materials, 2008, 18, 652-663.	7.8	94
20	Microfluidic Fabrication of Bio-Inspired Microfibers with Controllable Magnetic Spindle-Knots for 3D Assembly and Water Collection. ACS Applied Materials & amp; Interfaces, 2015, 7, 17471-17481.	4.0	91
21	Rapid pH/temperature-responsive cationic hydrogels with dual stimuli-sensitive grafted side chains. Polymer, 2009, 50, 2516-2525.	1.8	90
22	pH-responsive poly(ether sulfone) composite membranes blended with amphiphilic polystyrene-block-poly(acrylic acid) copolymers. Journal of Membrane Science, 2014, 450, 162-173.	4.1	90
23	Positively K ⁺ â€Responsive Membranes with Functional Gates Driven by Host–Guest Molecular Recognition. Advanced Functional Materials, 2012, 22, 4742-4750.	7.8	87
24	Study of SPG membrane emulsification processes for the preparation ofÂmonodisperse core–shell microcapsules. Journal of Colloid and Interface Science, 2003, 265, 187-196.	5.0	84
25	Trojanâ€Horse‣ike Stimuliâ€Responsive Microcapsules. Advanced Science, 2018, 5, 1700960.	5.6	83
26	Simple and cheap microfluidic devices for the preparation of monodisperse emulsions. Lab on A Chip, 2011, 11, 3963.	3.1	80
27	Dual thermo-responsive and ion-recognizable monodisperse microspheres. Polymer, 2009, 50, 922-929.	1.8	79
28	Novel Intestinal-Targeted Ca-Alginate-Based Carrier for pH-Responsive Protection and Release of Lactic Acid Bacteria. ACS Applied Materials & Interfaces, 2014, 6, 5962-5970.	4.0	79
29	Ion-recognizable hydrogels for efficient removal of cesium ions from aqueous environment. Journal of Hazardous Materials, 2017, 323, 632-640.	6.5	79
30	Gating membranes for water treatment: detection and removal of trace Pb2+ ions based on molecular recognition and polymer phase transition. Journal of Materials Chemistry A, 2013, 1, 9659.	5.2	75
31	Preparation and enantiomer separation characteristics of chitosan/β-cyclodextrin composite membranes. Journal of Membrane Science, 2007, 297, 262-270.	4.1	74
32	Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction. Acta Biomaterialia, 2016, 38, 153-162.	4.1	73
33	Designable Polymeric Microparticles from Droplet Microfluidics for Controlled Drug Release. Advanced Materials Technologies, 2019, 4, 1800687.	3.0	73
34	Preparation and characterization of dual stimuli-responsive microcapsules with a superparamagnetic porous membrane and thermo-responsive gates. Journal of Membrane Science, 2008, 321, 324-330.	4.1	69
35	Preparation of high strength poly(vinylidene fluoride) porous membranes with cellular structure via vapor-induced phase separation. Journal of Membrane Science, 2018, 549, 151-164.	4.1	67
36	Simple and Continuous Fabrication of Self-Propelled Micromotors with Photocatalytic Metal–Organic Frameworks for Enhanced Synergistic Environmental Remediation. ACS Applied Materials & Interfaces, 2020, 12, 35120-35131.	4.0	67

#	Article	IF	CITATIONS
37	A Novel Thermoâ€Induced Selfâ€Bursting Microcapsule with Magneticâ€Targeting Property. ChemPhysChem, 2009, 10, 2405-2409.	1.0	66
38	Thermo-responsive monodisperse core–shell microspheres with PNIPAM core and biocompatible porous ethyl cellulose shell embedded with PNIPAM gates. Journal of Colloid and Interface Science, 2012, 376, 97-106.	5.0	65
39	A thermo-responsive affinity membrane with nano-structured pores and grafted poly(N-isopropylacrylamide) surface layer for hydrophobic adsorption. Journal of Membrane Science, 2010, 349, 258-267.	4.1	64
40	Stimuli-responsive Membranes: Smart Tools for Controllable Mass-transfer and Separation Processes. Chinese Journal of Chemical Engineering, 2011, 19, 891-903.	1.7	63
41	Microfluidic preparation of monodisperse ethyl cellulose hollow microcapsules with non-toxic solvent. Journal of Colloid and Interface Science, 2009, 336, 100-106.	5.0	59
42	A microfluidic approach to fabricate monodisperse hollow or porous poly(HEMA–MMA) microspheres using single emulsions as templates. Journal of Colloid and Interface Science, 2009, 336, 235-243.	5.0	59
43	Poly(<i>N</i> â€isopropylacrylamide)â€based combâ€type grafted hydrogel with rapid response to blood glucose concentration change at physiological temperature. Polymers for Advanced Technologies, 2008, 19, 937-943.	1.6	58
44	Ethanolâ€responsive characteristics of polyethersulfone composite membranes blended with poly(<i>N</i> â€isopropylacrylamide) nanogels. Journal of Applied Polymer Science, 2014, 131, .	1.3	58
45	Nanocomposite smart hydrogels with improved responsiveness and mechanical properties: A mini review. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1306-1313.	2.4	56
46	K+-recognition capsules with squirting release mechanisms. Chemical Communications, 2011, 47, 12283.	2.2	55
47	Microfluidic fabrication of chitosan microfibers with controllable internals from tubular to peapod-like structures. RSC Advances, 2015, 5, 928-936.	1.7	54
48	Controllable microfluidic strategies for fabricating microparticles using emulsions as templates. Particuology, 2016, 24, 18-31.	2.0	54
49	Fabrication of nanofibers with phase-change core and hydrophobic shell, via coaxial electrospinning using nontoxic solvent. Journal of Materials Science, 2015, 50, 5729-5738.	1.7	52
50	Fabrication of glass-based microfluidic devices with dry film photoresists as pattern transfer masks for wet etching. RSC Advances, 2015, 5, 5638-5646.	1.7	51
51	Microfluidic generation of hollow Ca-alginate microfibers. Lab on A Chip, 2016, 16, 2673-2681.	3.1	51
52	Novel calcium-alginate capsules with aqueous core and thermo-responsive membrane. Journal of Colloid and Interface Science, 2011, 353, 61-68.	5.0	50
53	Novel cationic pH-responsive poly(N,N-dimethylaminoethyl methacrylate) microcapsules prepared by a microfluidic technique. Journal of Colloid and Interface Science, 2011, 357, 101-108.	5.0	48
54	Uniform Microparticles with Controllable Highly Interconnected Hierarchical Porous Structures. ACS Applied Materials & Interfaces, 2015, 7, 13758-13767.	4.0	48

#	Article	IF	CITATIONS
55	Comprehensive Effects of Metal Ions on Responsive Characteristics of P(NIPAM- <i>co</i> -B18C6Am). Journal of Physical Chemistry B, 2012, 116, 5527-5536.	1.2	47
56	Controllable Multicompartmental Capsules with Distinct Cores and Shells for Synergistic Release. ACS Applied Materials & Interfaces, 2016, 8, 8743-8754.	4.0	47
57	Smart responsive microcapsules capable of recognizing heavy metal ions. Journal of Colloid and Interface Science, 2010, 349, 512-518.	5.0	46
58	Monodisperse and Fast-Responsive Poly(<i>N</i> -isopropylacrylamide) Microgels with Open-Celled Porous Structure. Langmuir, 2014, 30, 1455-1464.	1.6	46
59	Novel Biocompatible Thermoresponsive Poly(<i>N</i> -vinyl Caprolactam)/Clay Nanocomposite Hydrogels with Macroporous Structure and Improved Mechanical Characteristics. ACS Applied Materials & Interfaces, 2017, 9, 21979-21990.	4.0	46
60	Gating characteristics of thermo-responsive and molecular-recognizable membranes based on poly(N-isopropylacrylamide) and β-cyclodextrin. Journal of Membrane Science, 2010, 355, 142-150.	4.1	44
61	Chitosan microcapsule membranes with nanoscale thickness for controlled release of drugs. Journal of Membrane Science, 2019, 590, 117275.	4.1	44
62	Ultrasensitive microchip based on smart microgel for real-time online detection of trace threat analytes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2023-2028.	3.3	43
63	Dual pH-responsive smart gating membranes. Journal of Membrane Science, 2018, 555, 20-29.	4.1	43
64	Smart gating membranes with in situ self-assembled responsive nanogels as functional gates. Scientific Reports, 2015, 5, 14708.	1.6	42
65	Temperature-dependent molecular-recognizable membranes based on poly(N-isopropylacrylamide) and β-cyclodextrin. Journal of Membrane Science, 2009, 326, 618-626.	4.1	41
66	A Novel Strategy to Fabricate Cation-Cross-linked Graphene Oxide Membrane with High Aqueous Stability and High Separation Performance. ACS Applied Materials & Interfaces, 2020, 12, 56269-56280.	4.0	41
67	Designable Microâ€∕Nanoâ€Structured Smart Polymeric Materials. Advanced Materials, 2022, 34, e2107877.	11.1	41
68	A novel ionâ€imprinted hydrogel for recognition of potassium ions with rapid response. Polymers for Advanced Technologies, 2011, 22, 1389-1394.	1.6	39
69	Ultrasensitive diffraction gratings based on smart hydrogels for highly selective and rapid detection of trace heavy metal ions. Journal of Materials Chemistry C, 2018, 6, 11356-11367.	2.7	39
70	Novel Multifunctional Stimuli-Responsive Nanoparticles for Synergetic Chemo–Photothermal Therapy of Tumors. ACS Applied Materials & Interfaces, 2021, 13, 28802-28817.	4.0	39
71	Facile Fabrication of Composite Membranes with Dual Thermo- and pH-Responsive Characteristics. ACS Applied Materials & Interfaces, 2017, 9, 14409-14421.	4.0	38
72	Controllable synthesis of MnO ₂ nanostructures anchored on graphite foam with different morphologies for a high-performance asymmetric supercapacitor. CrystEngComm, 2018, 20, 1690-1697.	1.3	38

#	Article	IF	CITATIONS
73	Nano-structure construction of porous membranes by depositing nanoparticles for enhanced surface wettability. Journal of Membrane Science, 2013, 427, 63-72.	4.1	37
74	Thermosensitive Affinity Behavior of Poly(N-isopropylacrylamide) Hydrogels with β-Cyclodextrin Moieties. Industrial & Engineering Chemistry Research, 2007, 46, 1511-1518.	1.8	35
75	Effects of fabrication conditions on the microstructures and performances of smart gating membranes with in situ assembled nanogels as gates. Journal of Membrane Science, 2016, 519, 32-44.	4.1	35
76	Alginate/protamine/silica hybrid capsules with ultrathin membranes for laccase immobilization. AICHE Journal, 2013, 59, 380-389.	1.8	34
77	Molecularâ€Recognitionâ€Induced Phase Transitions of Two Thermoâ€Responsive Polymers with Pendent <i>β</i> â€Cyclodextrin Groups. Macromolecular Chemistry and Physics, 2008, 209, 204-211.	1.1	33
78	pH-responsive Ca-alginate-based capsule membranes with grafted poly(methacrylic acid) brushes for controllable enzyme reaction. Chemical Engineering Journal, 2013, 232, 573-581.	6.6	33
79	Portable Diagnosis Method of Hyperkalemia Using Potassium-Recognizable Poly(N-isopropylacrylamide-co-benzo-15-crown-5-acrylamide) Copolymers. Analytical Chemistry, 2013, 85, 6477-6484.	3.2	33
80	Monodisperse Na ₂ SO ₄ ·10H ₂ O@SiO ₂ Microparticles against Supercooling and Phase Separation during Phase Change for Efficient Energy Storage. Industrial & Engineering Chemistry Research, 2017, 56, 3297-3308.	1.8	33
81	Microfluidic fabrication and thermal characteristics of core–shell phase change microfibers with high paraffin content. Applied Thermal Engineering, 2015, 87, 471-480.	3.0	31
82	Bio-inspired mini-eggs with pH-responsive membrane for enzyme immobilization. Journal of Membrane Science, 2013, 429, 313-322.	4.1	28
83	Polymersomes with Rapid K ⁺ -Triggered Drug-Release Behaviors. ACS Applied Materials & Interfaces, 2017, 9, 19258-19268.	4.0	28
84	Controllable Microfluidic Fabrication of Magnetic Hybrid Microswimmers with Hollow Helical Structures. Industrial & Engineering Chemistry Research, 2018, 57, 9430-9438.	1.8	28
85	A novel smart membrane with ion-recognizable nanogels as gates on interconnected pores for simple and rapid detection of trace lead(II) ions in water. Journal of Membrane Science, 2019, 575, 28-37.	4.1	28
86	Biodegradable â€`intelligent' materials in response to chemical stimuli for biomedical applications. Expert Opinion on Therapeutic Patents, 2009, 19, 683-696.	2.4	27
87	A facile and controllable method to encapsulate phase change materials with non-toxic and biocompatible chemicals. Applied Thermal Engineering, 2014, 70, 817-826.	3.0	27
88	Preparation of monodisperse poly(N-isopropylacrylamide) microspheres and microcapsules via Shirasu-porous-glass membrane emulsification. Desalination, 2008, 234, 184-194.	4.0	26
89	Hydrogel-Based Microactuators with Remote-Controlled Locomotion and Fast Pb ²⁺ -Response for Micromanipulation. ACS Applied Materials & Interfaces, 2013, 5, 7219-7226.	4.0	26
90	Monodisperse erythrocyte-sized and acid-soluble chitosan microspheres prepared via electrospraying. RSC Advances, 2015, 5, 34243-34250.	1.7	26

#	Article	IF	CITATIONS
91	pH-responsive controlled release characteristics of solutes with different molecular weights diffusing across membranes of Ca-alginate/protamine/silica hybrid capsules. Journal of Membrane Science, 2015, 474, 233-243.	4.1	26
92	Conversion of Alcoholic Concentration Variations into Mechanical Force via Core–Shell Capsules. Journal of Physical Chemistry B, 2012, 116, 974-979.	1.2	25
93	On-chip thermo-triggered coalescence of controllable Pickering emulsion droplet pairs. RSC Advances, 2016, 6, 64182-64192.	1.7	25
94	A Novel Thermoresponsive Catalytic Membrane with Multiscale Pores Prepared via Vaporâ€Induced Phase Separation. Small, 2018, 14, e1703650.	5.2	25
95	Facile Fabrication of Bubble-Propelled Micromotors Carrying Nanocatalysts for Water Remediation. Industrial & Engineering Chemistry Research, 2018, 57, 4562-4570.	1.8	25
96	Effect of Oxidized-Group-Supported Lamellar Distance on Stability of Graphene-Based Membranes in Aqueous Solutions. Industrial & Engineering Chemistry Research, 2018, 57, 9439-9447.	1.8	25
97	Bubble-Propelled Hierarchical Porous Micromotors from Evolved Double Emulsions. Industrial & Engineering Chemistry Research, 2019, 58, 1590-1600.	1.8	25
98	Smart microcapsules for direction-specific burst release of hydrophobic drugs. RSC Advances, 2014, 4, 46568-46575.	1.7	24
99	Microfluidic Fabrication of Structure-Controlled Chitosan Microcapsules via Interfacial Cross-Linking of Droplet Templates. ACS Applied Materials & Interfaces, 2020, 12, 57514-57525.	4.0	24
100	Transparent thermo-responsive poly(<i>N</i> -isopropylacrylamide)- <i>l</i> -poly(ethylene) Tj ETQq0 0 0 rgBT /Ov 2019, 43, 9507-9515.	erlock 10 1.4	Tf 50 387 Td 23
101	Monodisperse microspheres with poly(N-isopropylacrylamide) core and poly(2-hydroxyethyl) Tj ETQq1 1 0.78431	.4 ဋ္ဌBT /O	verlock 10 Th
102	Microfluidic Preparation of Multicompartment Microcapsules for Isolated Co-encapsulation and Controlled Release of Diverse Components. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13, 325-332.	0.4	22
103	Regulation of Critical Ethanol Response Concentrations of Ethanol-Responsive Smart Gating Membranes. Industrial & Engineering Chemistry Research, 2012, 51, 9554-9563.	1.8	22
104	A novel membrane with ion-recognizable copolymers in graphene-based nanochannels for facilitated transport of potassium ions. Journal of Membrane Science, 2019, 591, 117345.	4.1	22
105	A Novel, Smart Microsphere with K ⁺ -Induced Shrinking and Aggregating Properties Based on a Responsive Host–Guest System. ACS Applied Materials & Interfaces, 2014, 6, 19405-19415.	4.0	21
106	An easily recoverable thermo-sensitive polyelectrolyte as draw agent for forward osmosis process. Chinese Journal of Chemical Engineering, 2016, 24, 86-93.	1.7	21
107	Antifouling membranes with bi-continuous porous structures and high fluxes prepared by vapor-induced phase separation. Journal of Membrane Science, 2020, 611, 118256.	4.1	21
108	The microfluidic synthesis of composite hollow microfibers for K ⁺ -responsive controlled release based on a host–guest system. Journal of Materials Chemistry B, 2016, 4, 3925-3935.	2.9	20

#	Article	IF	CITATIONS
109	Nanostructured Thermoresponsive Surfaces Engineered via Stable Immobilization of Smart Nanogels with Assistance of Polydopamine. ACS Applied Materials & Interfaces, 2018, 10, 44092-44101.	4.0	20
110	Smart hydrogels: Network design and emerging applications. Canadian Journal of Chemical Engineering, 2018, 96, 2100-2114.	0.9	20
111	Injectable Temperature/Glucose Dual-Responsive Hydrogels for Controlled Release of Insulin. Industrial & Engineering Chemistry Research, 2021, 60, 8147-8158.	1.8	20
112	Effects of surface wettability and roughness of microchannel on flow behaviors of thermo-responsive microspheres therein during the phase transition. Journal of Colloid and Interface Science, 2009, 336, 162-170.	5.0	19
113	Phase transition behaviors of poly(N-isopropylacrylamide) microgels induced by tannic acid. Journal of Colloid and Interface Science, 2010, 343, 168-175.	5.0	19
114	Novel Smart Microreactors Equipped with Responsive Catalytic Nanoparticles on Microchannels. ACS Applied Materials & Interfaces, 2017, 9, 33137-33148.	4.0	19
115	Controllable Microfluidic Fabrication of Microstructured Materials from Nonspherical Particles to Helices. Macromolecular Rapid Communications, 2017, 38, 1700429.	2.0	19
116	Microfluidic fabrication of core–sheath composite phase change microfibers with enhanced thermal conductive property. Journal of Materials Science, 2018, 53, 15769-15783.	1.7	19
117	Smart Hydrogel Gratings for Sensitive, Facile, and Rapid Detection of Ethanol Concentration. Industrial & Engineering Chemistry Research, 2019, 58, 17833-17841.	1.8	19
118	A novel chemosensor for sensitive and facile detection of strontium ions based on ion-imprinted hydrogels modified with guanosine derivatives. Journal of Hazardous Materials, 2022, 421, 126801.	6.5	19
119	Diffusional permeability characteristics of positively K+-responsive membranes caused by spontaneously changing membrane pore size and surface wettability. Journal of Membrane Science, 2016, 497, 328-338.	4.1	18
120	Spontaneous transfer of droplets across microfluidic laminar interfaces. Lab on A Chip, 2016, 16, 4326-4332.	3.1	17
121	Halloysite Nanotube Composited Thermo-responsive Hydrogel System for Controlled-release. Chinese Journal of Chemical Engineering, 2013, 21, 991-998.	1.7	16
122	Fabrication of a thermo-responsive membrane with cross-linked smart gates via a â€~grafting-to' method. RSC Advances, 2016, 6, 45428-45433.	1.7	16
123	Facile Fabrication of Photocatalyst-Immobilized Gel Beads with Interconnected Macropores for the Efficient Removal of Pollutants in Water. Industrial & Engineering Chemistry Research, 2021, 60, 8762-8775.	1.8	16
124	Nano-gel containing thermo-responsive microspheres with fast response rate owing to hierarchical phase-transition mechanism. Journal of Colloid and Interface Science, 2012, 377, 137-144.	5.0	14
125	Multiple emulsion formation from controllable drop pairs in microfluidics. Microfluidics and Nanofluidics, 2014, 17, 967-972.	1.0	14
126	Effects of hydrophilicity of blended submicrogels on the microstructure and performance of thermo-responsive membranes. Journal of Membrane Science, 2019, 584, 202-215.	4.1	14

#	Article	IF	CITATIONS
127	Smart Hydrogel Grating Immunosensors for Highly Selective and Sensitive Detection of Human-IgG. Industrial & Engineering Chemistry Research, 2020, 59, 10469-10475.	1.8	14
128	Visual detection of trace lead(II) using a forward osmosis-driven device loaded with ion-responsive nanogels. Journal of Hazardous Materials, 2021, 404, 124157.	6.5	14
129	Visual detection of lead(<scp>ii</scp>) using a simple device based on P(NIPAM-co-B18C6Am) hydrogel. RSC Advances, 2014, 4, 26030-26037.	1.7	13
130	Hybrid Graphene Oxide/Laponite Layered Membranes with Stable Two-Dimensional Nanochannels for Efficient Separations in Aqueous Environments. Industrial & Engineering Chemistry Research, 2020, 59, 12441-12450.	1.8	13
131	Beta-cyclodextrin-based molecular-recognizable smart microcapsules for controlled release. Journal of Materials Science, 2014, 49, 6862-6871.	1.7	12
132	A Simple Device Based on Smart Hollow Microgels for Facile Detection of Trace Lead(II) Ions. ChemPhysChem, 2018, 19, 2025-2036.	1.0	12
133	CO2-responsive poly(N,N-dimethylaminoethyl methacrylate) hydrogels with fast responsive rate. Journal of the Taiwan Institute of Chemical Engineers, 2019, 94, 135-142.	2.7	12
134	Capsule membranes encapsulated with smart nanogels for facile detection of trace lead(II) ions in water. Journal of Membrane Science, 2020, 613, 118523.	4.1	12
135	K ⁺ â€Responsive Block Copolymer Micelles for Targeted Intracellular Drug Delivery. Macromolecular Bioscience, 2017, 17, 1700143.	2.1	11
136	Online monitoring of ethanol concentration using a responsive microfluidic membrane device. Analytical Methods, 2016, 8, 4028-4036.	1.3	9
137	Functional Capsules Encapsulating Molecular-Recognizable Nanogels for Facile Removal of Organic Micro-Pollutants from Water. Engineering, 2021, 7, 636-646.	3.2	9
138	Lower critical solution temperatures of thermo-responsive poly(N-isopropylacrylamide) copolymers with racemate or single enantiomer groups. Polymer International, 2009, 58, 202-208.	1.6	8
139	Visual detection of methanol in alcoholic beveragesÂusing alcohol-responsive poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) copolymers as indicators. RSC Advances, 2014, 4, 61711-61721.	1.7	8
140	Magnetically Assembled Photonic Crystal Gels with Wide Thermochromic Range and High Sensitivity. Macromolecular Rapid Communications, 2021, 42, e2100200.	2.0	8
141	Microfluidic fabrication of hydrogel microparticles with MOF-armoured multi-enzymes for cascade biocatalytic reactions. Reaction Chemistry and Engineering, 2022, 7, 275-283.	1.9	8
142	Ethanolâ€Responsive Poly(Vinylidene Difluoride) Membranes with Nanogels as Functional Gates. Chemical Engineering and Technology, 2016, 39, 841-848.	0.9	7
143	A Novel Poly(<i>N</i> â€lsopropylacrylamideâ€ <i>co</i> â€acryloylamidobenzoâ€12â€crownâ€4) Microgel with I Stimuliâ€Responsiveness for Moleculeâ€6pecific Adsorption of γâ€Cyclodextrin. Macromolecular Chemistry and Physics, 2017, 218, 1700216.	Rapid 1.1	7
144	Stimulus-Responsive Nanoparticle-Integrated Dissolving Microneedles for Synergetic Chemo-Photothermal Therapy of Superficial Skin Tumors. Industrial & Engineering Chemistry Research, 2022, 61, 7982-7995.	1.8	7

#	Article	IF	CITATIONS
145	Smart membranes for biomedical applications. Chinese Journal of Chemical Engineering, 2022, 49, 34-45.	1.7	7
146	<i>Gamma</i> â€Cyclodextrinâ€Recognitionâ€Responsive Characteristics of Poly(<i>N</i> â€isopropylacrylamide)â€Based Hydrogels with Benzoâ€12â€crownâ€4 Units as Signal Receptors. Macromolecular Chemistry and Physics, 2017, 218, 1600386.	1.1	6
147	Smart hydrogels with wide visible color tunability. NPG Asia Materials, 2022, 14, .	3.8	6
148	Efficient Detection of Hyperkalemia with Highly Transparent and Ion-Recognizable Hydrogel Grating Sensors. Industrial & Engineering Chemistry Research, 2022, 61, 2483-2493.	1.8	5
149	Enhanced H-filter based on Fåhræus-Lindqvist effect for efficient and robust dialysis without membrane. Biomicrofluidics, 2015, 9, 044112.	1.2	4
150	Drug Delivery: Multi‣timuliâ€Responsive Microcapsules for Adjustable Controlledâ€Release (Adv. Funct.) Tj ETC	2q0,0 0 rg	;BŢ /Overloc
151	Zinc-coordinated polydopamine surface with a nanostructure and superhydrophilicity for	9.6	0

191	antibiofouling and antibacterial applications. Materials Advances, 2022, 3, 5476-5487.	2.0	త
152	Pseudo Polyampholytes with Sensitively Ionâ€Responsive Conformational Transition Based on Positively Charged Host–Guest Complexes. Macromolecular Rapid Communications, 2022, , 2200127.	2.0	2
153	Humidity-Responsive Actuators Based on Firm Heterojunction of Glycerol-Cross-linked Polyvinyl Alcohol and Porous Polyvinylidene Fluoride as Smart Gates for Anti-condensation. Industrial & Engineering Chemistry Research, 2022, 61, 8101-8111.	1.8	2
154	Smart Membranes: Positively K ⁺ â€Responsive Membranes with Functional Gates Driven by Host–Guest Molecular Recognition (Adv. Funct. Mater. 22/2012). Advanced Functional Materials, 2012, 22, 4741-4741.	7.8	1
155	Preparation and Characterization of Novel Lowâ€Temperature/pH Dualâ€Responsive Poly(N) Tj ETQq1 1 0.7843 Physics, 2019, 220, 1900123.	14 rgBT /C 1.1	Overlock 10 1

Titelbild: Hole-Shell Microparticles from Controllably Evolved Double Emulsions (Angew. Chem.) Tj ETQq000 rgBT /Overlock 10 Tf 50 30 1.6

157	Macromol. Rapid Commun. 14/2014. Macromolecular Rapid Communications, 2014, 35, 1308-1308.	2.0	0
158	Macromol. Chem. Phys. 1/2017. Macromolecular Chemistry and Physics, 2017, 218, .	1.1	0
159	Functional Microcapsules with Thermo-responsive Hydrogel Shells. , 2013, , 135-152.		0
160	Preparation and Properties of Monodisperse Thermo-responsive Microgels. , 2013, , 25-58.		0
161	Hollow fiber membranes with knitted braid-like structures for process intensification via generation of Dean vortices. Separation Science and Technology, 0, , 1-17.	1.3	0