
Marvin L Meistrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3763745/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roles of transition nuclear proteins in spermiogenesis. Chromosoma, 2003, 111, 483-488.	1.0	298
2	Effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertility and Sterility, 2013, 100, 1180-1186.	0.5	292
3	The Fas System, a Regulator of Testicular Germ Cell Apoptosis, Is Differentially Up-Regulated in Sertoli Cell Versus Germ Cell Injury of the Testis*. Endocrinology, 1999, 140, 852-858.	1.4	259
4	Purification of Rat Spermatogenic Cells and Preliminary Biochemical Analysis of These Cells. Biology of Reproduction, 1981, 25, 1065-1077.	1.2	236
5	Chemotherapy induces transient sex chromosomal and autosomal aneuploidy in human sperm. Nature Genetics, 1997, 16, 74-78.	9.4	221
6	Rhox: A New Homeobox Gene Cluster. Cell, 2005, 120, 369-382.	13.5	220
7	Autologous grafting of cryopreserved prepubertal rhesus testis produces sperm and offspring. Science, 2019, 363, 1314-1319.	6.0	217
8	Chapter 2 Separation of Spermatogenic Cells and Nuclei from Rodent Testes. Methods in Cell Biology, 1977, 15, 15-54.	0.5	182
9	Gradual Regeneration of Mouse Testicular Stem Cells after Exposure to Ionizing Radiation. Radiation Research, 1978, 74, 349.	0.7	172
10	Targeted Disruption of the Transition Protein 2 Gene Affects Sperm Chromatin Structure and Reduces Fertility in Mice. Molecular and Cellular Biology, 2001, 21, 7243-7255.	1.1	172
11	Decline in fertility of mouse sperm with abnormal chromatin during epididymal passage as revealed by ICSI. Human Reproduction, 2005, 20, 3101-3108.	0.4	170
12	Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis, 2004, 38, 200-213.	0.8	169
13	Centrifugal elutriation: Separation of spermatogenic cells on the basis of sedimentation velocity. Journal of Cellular Physiology, 1975, 86, 177-189.	2.0	149
14	Male gonadal toxicity. Pediatric Blood and Cancer, 2009, 53, 261-266.	0.8	148
15	Biosynthesis and localization of lactate dehydrogenase X in pachytene spermatocytes and spermatids of mouse testes. Developmental Biology, 1977, 60, 428-441.	0.9	143
16	Quantitative Correlation Between Testicular Stem Cell Survival, Sperm Production, and Fertility in the Mouse After Treatment With Different Cytotoxic Agents. Journal of Andrology, 1982, 3, 58-68.	2.0	140
17	Protamine 2 precursors, protamine 1/protamine 2 ratio, DNA integrity and other sperm parameters in infertile patients. Human Reproduction, 2006, 21, 2084-2089.	0.4	140
18	Abnormalities and Reduced Reproductive Potential of Sperm from Tnp1- and Tnp2-Null Double Mutant Mice1. Biology of Reproduction, 2004, 71, 1220-1229.	1.2	136

#	Article	IF	CITATIONS
19	Assessment of Spermatogenesis Through Staging of Seminiferous Tubules. Methods in Molecular Biology, 2013, 927, 299-307.	0.4	134
20	Nucleoprotein Transitions During Spermiogenesis in Mice with Transition Nuclear Protein Tnp1 and Tnp2 Mutations1. Biology of Reproduction, 2004, 71, 1016-1025.	1.2	113
21	Failure of Spermatogenesis to Recover Despite the Presence of A Spermatogonia in the Irradiated LBNF1 Rat1. Biology of Reproduction, 1996, 54, 1200-1208.	1.2	111
22	The Testis-Enriched Histone Demethylase, KDM4D, Regulates Methylation of Histone H3 Lysine 9 During Spermatogenesis in the Mouse but Is Dispensable for Fertility1. Biology of Reproduction, 2011, 84, 1225-1234.	1.2	101
23	Gonadotropin-Releasing Hormone Analogs Stimulate and Testosterone Inhibits the Recovery of Spermatogenesis in Irradiated Rats*. Endocrinology, 2000, 141, 1735-1745.	1.4	100
24	The radiation-induced block in spermatogonial differentiation is due to damage to the somatic environment, not the germ cells. Journal of Cellular Physiology, 2007, 211, 149-158.	2.0	97
25	Protamine 2 precursors (Pre-P2), protamine 1 to protamine 2 ratio (P1/P2), and assisted reproduction outcome. Fertility and Sterility, 2009, 91, 715-722.	0.5	96
26	Hormonal Approaches to Preservation and Restoration of Male Fertility After Cancer Treatment. Journal of the National Cancer Institute Monographs, 2005, 2005, 36-39.	0.9	95
27	Enhancement of A Spermatogonial Proliferation and Differentiation in Irradiated Rats by Gonadotropin-Releasing Hormone Antagonist Administration1. Endocrinology, 2000, 141, 37-49.	1.4	93
28	Cisplatinâ€Induced Longâ€ŧerm Failure of Spermatogenesis in Adult C57/Bl/6J Mice. Journal of Andrology, 2005, 26, 136-145.	2.0	90
29	Hormonal suppression for fertility preservation in males and females. Reproduction, 2008, 136, 691-701.	1.1	89
30	Germline stem cells: toward the regeneration of spermatogenesis. Fertility and Sterility, 2014, 101, 3-13.	0.5	85
31	Chd5 orchestrates chromatin remodelling during sperm development. Nature Communications, 2014, 5, 3812.	5.8	82
32	Potential genetic risks of using semen collected during chemotherapy. Human Reproduction, 1993, 8, 8-10.	0.4	81
33	PemHomeobox Gene Promoter Sequences that Direct Transcription in a Sertoli Cell-Specific, Stage-Specific, and Androgen-Dependent Manner in the Testisin Vivo. Molecular Endocrinology, 2003, 17, 223-233.	3.7	80
34	H2A.Bbd: an X-chromosome-encoded histone involved in mammalian spermiogenesis. Nucleic Acids Research, 2010, 38, 1780-1789.	6.5	71
35	Partial characterization of a new basic nuclear protein from rat testis elongated spermatids. Biochemical and Biophysical Research Communications, 1975, 67, 182-189.	1.0	68
36	Hormonal stimulation of the recovery of spermatogenesis following chemo―or radiotherapy. Apmis, 1998, 106, 37-46.	0.9	65

#	Article	IF	CITATIONS
37	Male reproductive function in long-term survivors of childhood cancer. Medical and Pediatric Oncology, 1988, 16, 241-247.	1.0	64
38	Inhibition of Spermatogonial Differentiation by Testosterone. Journal of Andrology, 2003, 24, 135-148.	2.0	64
39	Poly(ADP-Ribose) Polymerases PARP1 and PARP2 Modulate Topoisomerase II Beta (TOP2B) Function During Chromatin Condensation in Mouse Spermiogenesis1. Biology of Reproduction, 2011, 84, 900-909.	1.2	64
40	Genetic Disease in Offspring of Long-Term Survivors of Childhood and Adolescent Cancer Treated with Potentially Mutagenic Therapies. American Journal of Human Genetics, 2002, 70, 1069-1071.	2.6	62
41	Radiation Sensitivity of the Human Testis. Advances in Radiation Biology, 1990, , 227-268.	0.4	61
42	Inhibition of Recovery of Spermatogenesis in Irradiated Rats by Different Androgens. Endocrinology, 2002, 143, 3385-3396.	1.4	56
43	NOVP chemotherapy for Hodgkin's disease transiently induces sperm aneuploidies associated with the major clinical aneuploidy syndromes involving chromosomes X, Y, 18, and 21. Cancer Research, 2003, 63, 44-51.	0.4	55
44	Protection from Radiation-Induced Damage to Spermatogenesis by Hormone Treatment. Radiation Research, 1994, 139, 97.	0.7	54
45	Irradiated Mouse Testes Efficiently Support Spermatogenesis Derived From Donor Germ Cells of Mice and Rats. Journal of Andrology, 2006, 27, 365-375.	2.0	54
46	Frequency of minisatellite repeat number changes at the MS205 locus in human sperm before and after cancer chemotherapy. Environmental and Molecular Mutagenesis, 2000, 36, 134-145.	0.9	53
47	Testicular Edema Is Associated with Spermatogonial Arrest in Irradiated Rats. Endocrinology, 2006, 147, 1297-1305.	1.4	53
48	Minisatellite mutation frequency in human sperm following radiotherapy. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 453, 67-75.	0.4	49
49	Differentiation of primate primordial germ cell-like cells following transplantation into the adult gonadal niche. Nature Communications, 2018, 9, 5339.	5.8	47
50	Stimulation of Spermatogonial Differentiation in Juvenile Spermatogonial Depletion (<i>jsd</i>) Mutant Mice by Gonadotropin-Releasing Hormone Antagonist Treatment. Endocrinology, 1999, 140, 4912-4915.	1.4	46
51	Resolution of X and Y spermatids by pulse cytophotometry. Nature, 1978, 274, 821-823.	13.7	45
52	Expression of RNAs for Calmodulin, Actins, and Tubulins in Rat Testis Cells1. Biology of Reproduction, 1989, 40, 395-405.	1.2	45
53	Effects of multiple doses of cyclophosphamide on mouse testes: Accessing the germ cells lost, and the functional damage of stem cells. Reproductive Toxicology, 2011, 32, 395-406.	1.3	45
54	Mouse protamine genes are candidate targets for the novel orphan nuclear receptor, germ cell nuclear factor. Molecular Reproduction and Development, 1998, 50, 396-405.	1.0	43

#	Article	IF	CITATIONS
55	Testosterone Inhibits Spermatogonial Differentiation in Juvenile Spermatogonial Depletion Mice1. Endocrinology, 2001, 142, 2789-2795.	1.4	43
56	Gonadotropinâ€Releasing Hormone Antagonist (Cetrorelix) Therapy Fails to Protect Nonhuman Primates (<i>Macaca arctoides</i>) From Radiationâ€Induced Spermatogenic Failure. Journal of Andrology, 2005, 26, 222-234.	2.0	43
57	Poly(ADP-ribose) Metabolism Is Essential for Proper Nucleoprotein Exchange During Mouse Spermiogenesis. Biology of Reproduction, 2011, 84, 218-228.	1.2	39
58	Lupron Depot Prevention of Antispermatogenic/Antifertility Activity of the Indenopyridine, CDB-4022, in the Rat1. Biology of Reproduction, 2001, 65, 165-172.	1.2	37
59	Fetal Cyclophosphamide Exposure Induces Testicular Cancer and Reduced Spermatogenesis and Ovarian Follicle Numbers in Mice. PLoS ONE, 2014, 9, e93311.	1.1	37
60	Separation of Specific Stages of Spermatids from Vitamin A-Synchronized Rat Testes for Assessment of Nucleoprotein Changes during Spermiogenesis1. Biology of Reproduction, 1994, 51, 334-344.	1.2	36
61	Relationship of Ki-67 labeling index to DNA-ploidy, S-phase fraction, and outcome in prostate cancer treated with radiotherapy. , 1999, 41, 166-172.		36
62	Active Sperm Production after Cancer Chemotherapy with Doxorubicin. Journal of Urology, 1983, 130, 927-930.	0.2	33
63	Restoration of Spermatogenesis in Dibromochloropropane (DBCP)-Treated Rats by Hormone Suppression. Toxicological Sciences, 2003, 76, 418-426.	1.4	31
64	Both Testosterone and Follicle-Stimulating Hormone Independently Inhibit Spermatogonial Differentiation in Irradiated Rats. Endocrinology, 2006, 147, 472-482.	1.4	31
65	Estrogen Enhances Recovery From Radiation-Induced Spermatogonial Arrest in Rat Testes. Journal of Andrology, 2009, 30, 440-451.	2.0	31
66	Temporary effects of AMSA (4â€2-(9-acridinylamino) methanesulfon-m-anisidide) chemotherapy on spermatogenesis. Cancer, 1982, 49, 2459-2462.	2.0	30
67	Donor Sertoli cells transplanted into irradiated rat testes stimulate partial recovery of endogenous spermatogenesis. Reproduction, 2009, 137, 497-508.	1.1	30
68	Recovery of sperm production following radiation therapy for Hodgkin's disease after induction chemotherapy with mitoxantrone, vincristine, vinblastine, and prednisone (NOVP). International Journal of Radiation Oncology Biology Physics, 2000, 46, 609-617.	0.4	29
69	Utp14b: A unique retrogene within a gene that has acquired multiple promoters and a specific function in spermatogenesis. Developmental Biology, 2007, 304, 848-859.	0.9	28
70	Effects of Medroxyprogesterone and Estradiol on the Recovery of Spermatogenesis in Irradiated Rats. Endocrinology, 2004, 145, 4461-4469.	1.4	27
71	Suppression of testosterone stimulates recovery of spermatogenesis after cancer treatment. Journal of Developmental and Physical Disabilities, 2003, 26, 141-146.	3.6	26
72	Irradiation Selectively Inhibits Expression from the Androgen-Dependent Pem Homeobox Gene Promoter in Sertoli Cells*. Endocrinology, 2001, 142, 1567-1577.	1.4	25

#	Article	IF	CITATIONS
73	Age and insertion site dependence of repeat number instability of a human DM1 transgene in individual mouse sperm. Human Molecular Genetics, 2002, 11, 791-798.	1.4	25
74	Increased accessibility of the N-terminus of testis-specific histone TH2B to antibodies in elongating spermatids. Molecular Reproduction and Development, 1995, 42, 210-219.	1.0	24
75	Dibromochloropropane inhibits spermatogonial development in rats. Reproductive Toxicology, 2003, 17, 263-271.	1.3	24
76	Spermatogonial Differentiation in Juvenile Spermatogonial Depletion (jsd) Mice with Androgen Receptor or Follicle-Stimulating Hormone Mutations. Endocrinology, 2006, 147, 3563-3570.	1.4	24
77	High-Resolution Light Microscopic Characterization of Spermatogonia. Methods in Molecular Biology, 2008, 450, 95-107.	0.4	24
78	Changes in Gene Expression in Somatic Cells of Rat Testes Resulting from Hormonal Modulation and Radiation-Induced Germ Cell Depletion1. Biology of Reproduction, 2010, 82, 54-65.	1.2	24
79	Simultaneous estimation ofTG2+M,TS, andTpot using single sample dynamic tumor data from bivariate DNA-thymidine analogue cytometry. Cytometry, 2000, 41, 1-8.	1.8	22
80	Differences in Radiation Sensitivity of Recovery of Spermatogenesis Between Rat Strains. Toxicological Sciences, 2012, 126, 545-553.	1.4	22
81	Undifferentiated spermatogonia regulate <i>Cyp26b1</i> expression through NOTCH signaling and drive germ cell differentiation. FASEB Journal, 2019, 33, 8423-8435.	0.2	22
82	Restoration of functional sperm production in irradiated pubertal rhesus monkeys by spermatogonial stem cell transplantation. Andrology, 2020, 8, 1428-1441.	1.9	22
83	Hormonal Suppression Restores Fertility in Irradiated Mice from both Endogenous and Donor-Derived Stem Spermatogonia. Toxicological Sciences, 2010, 117, 225-237.	1.4	20
84	Androgen Receptor in Sertoli Cells Is Not Required for Testosterone-Induced Suppression of Spermatogenesis, but Contributes to Sertoli Cell Organization in Utp14bjsd Mice. Journal of Andrology, 2009, 30, 338-348.	2.0	19
85	Dynamic expression pattern and subcellular localization of the Rhox10 homeobox transcription factor during early germ cell development. Reproduction, 2012, 143, 611-624.	1.1	18
86	Postpubertal spermatogonial stem cell transplantation restores functional sperm production in rhesus monkeys irradiated before and after puberty. Andrology, 2021, 9, 1603-1616.	1.9	18
87	Estrogen-Regulated Genes in Rat Testes and Their Relationship to Recovery of Spermatogenesis after Irradiation1. Biology of Reproduction, 2011, 85, 823-833.	1.2	17
88	Donor spermatogenesis in de novo formed seminiferous tubules from transplanted testicular cells in rhesus monkey testis. Human Reproduction, 2018, 33, 2249-2255.	0.4	17
89	Risks of genetic damage in offspring conceived using spermatozoa produced during chemotherapy or radiotherapy. Andrology, 2020, 8, 545-558.	1.9	16
90	Testosterone Inhibits Spermatogonial Differentiation in Juvenile Spermatogonial Depletion Mice. , 0, .		16

#	Article	IF	CITATIONS
91	Gene Expression Alterations by Conditional Knockout of Androgen Receptor in Adult Sertoli Cells of Utp14bjsd/jsd (jsd) Mice1. Biology of Reproduction, 2010, 83, 759-766.	1.2	15
92	Effects of AMSA, An Antineoplastic Agent, on Spermatogenesis in the Mouse. Journal of Andrology, 1985, 6, 225-229.	2.0	14
93	HMGB4 is expressed by neuronal cells and affects the expression of genes involved in neural differentiation. Scientific Reports, 2016, 6, 32960.	1.6	14
94	Detection of radiation and cyclophosphamide-induced mutations in individual mouse sperm at a human expanded trinucleotide repeat locus transgene. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2002, 516, 121-138.	0.9	13
95	Stage-specific Expression of Dynein Light Chain-1 and Its Interacting Kinase, p21-activated Kinase-1, in Rodent Testes: Implications in Spermiogenesis. Journal of Histochemistry and Cytochemistry, 2005, 53, 1235-1243.	1.3	13
96	Stimulation of Spermatogonial Differentiation in Juvenile Spermatogonial Depletion (jsd) Mutant Mice by Gonadotropin-Releasing Hormone Antagonist Treatment. , 0, .		13
97	Spermatogonial behavior in rats during radiation-induced arrest and recovery after hormone suppression. Reproduction, 2013, 146, 363-376.	1.1	12
98	Irradiation Selectively Inhibits Expression from the Androgen-Dependent Pem Homeobox Gene Promoter in Sertoli Cells. , 0, .		12
99	Cell Synchrony Techniques. I. A Comparison of Methods. Cell Proliferation, 1984, 17, 223-236.	2.4	11
100	Temperature regulation during centrifugal elutriation and its effect on cell separation. Cell Biophysics, 1981, 3, 127-140.	0.4	9
101	Estimation of Human Reproductive Risk from Animal Studies: Determination of Interspecies Extrapolation Factors for Steroid Hormone Effects on the Male. Risk Analysis, 1988, 8, 27-33.	1.5	9
102	Androgen Suppression-Induced Stimulation of Spermatogonial Differentiation in Juvenile Spermatogonial Depletion Mice Acts by Elevating the Testicular Temperature. Endocrinology, 2011, 152, 3504-3514.	1.4	9
103	Hormone Pretreatment Enhances Recovery of Spermatogenesis in Rats after Neutron Irradiation. Radiation Research, 1999, 152, 51.	0.7	7
104	The impact of chemo- and radiotherapy treatments on selfish de novo FGFR2 mutations in sperm of cancer survivors. Human Reproduction, 2019, 34, 1404-1415.	0.4	7
105	The New Director of "the Spermatogonial Nicheâ€ı Introducing the Peritubular Macrophage. Cell Reports, 2015, 12, 1069-1070.	2.9	6
106	Chapter 10. Prevention of Adverse Effects of Cancer Treatment on the Germline. Issues in Toxicology, 2007, , 114-123.	0.2	6
107	Restoration of Spermatogenesis After Exposure to Toxicants: Genetic Implications. Advances in Experimental Medicine and Biology, 2003, 518, 227-237.	0.8	5
108	Cell Synchrony Techniques. II. Analysis of Cell Progression Data. Cell Proliferation, 1984, 17, 237-245.	2.4	4

#	Article	IF	CITATIONS
109	Hormones and Spermatogonial Development. , 2005, , 437-448.		3
110	Effects of antineoplastic and other medical treatments on sperm production. , 0, , 18-29.		2
111	A New Approach for Optimal Morphological Identification and Immunolabeling of Spermatogonial Cells. Microscopy and Microanalysis, 2014, 20, 1304-1311.	0.2	2
112	Meiotic susceptibility for induction of sperm with chromosomal aberrations in patients receiving combination chemotherapy for Hodgkin lymphoma. PLoS ONE, 2020, 15, e0242218.	1.1	2
113	Concordant Androgen-Regulated Expression of Divergent <i>Rhox5</i> Promoters in Sertoli Cells. Endocrinology, 2022, 163, .	1.4	2
114	Simultaneous estimation of TG2+M, TS, and Tpot using single sample dynamic tumor data from bivariate DNA-thymidine analogue cytometry. , 2000, 41, 1.		1
115	Application of spermatogenesis suppression therapies for fertility preservation. , 0, , 203-212.		0