Marcello Baricco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3763444/publications.pdf

Version: 2024-02-01

306 papers 6,788 citations

38 h-index 98798 67 g-index

316 all docs

316 docs citations

316 times ranked

4464 citing authors

#	Article	IF	CITATIONS
1	Materials for hydrogen-based energy storage – past, recent progress and future outlook. Journal of Alloys and Compounds, 2020, 827, 153548.	5.5	518
2	Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. International Journal of Hydrogen Energy, 2019, 44, 7780-7808.	7.1	486
3	Magnesium based materials for hydrogen based energy storage: Past, present and future. International Journal of Hydrogen Energy, 2019, 44, 7809-7859.	7.1	460
4	Hydrogen release from solid state NaBH4. International Journal of Hydrogen Energy, 2008, 33, 3111-3115.	7.1	128
5	Complex hydrides for energy storage. International Journal of Hydrogen Energy, 2019, 44, 7860-7874.	7.1	123
6	Substitutional effects in TiFe for hydrogen storage: a comprehensive review. Materials Advances, 2021, 2, 2524-2560.	5.4	90
7	Undercooling of Ni-B and Fe-B alloys and their metastable phase diagrams. Journal of Alloys and Compounds, 1997, 247, 164-171.	5.5	89
8	Study of the brittle behaviour of annealed Fe-6.5 wt%Si ribbons produced by planar flow casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 212, 62-68.	5.6	87
9	dc Joule heating of amorphous metallic ribbons: Experimental aspects and model. Review of Scientific Instruments, 1993, 64, 1053-1060.	1.3	82
10	Complex and liquid hydrides for energy storage. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	81
11	lodide substitution in lithium borohydride, LiBH4–Lil. Journal of Alloys and Compounds, 2011, 509, 8299-8305.	5.5	80
12	Mechanical alloying of the Al–Ti system. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1990, 61, 473-486.	0.6	78
13	Surface morphology and reactivity towards CO of MgO particles: FTIR and HRTEM studies. Spectrochimica Acta Part A: Molecular Spectroscopy, 1993, 49, 1289-1298.	0.1	77
14	Joule-heating effects in the amorphousFe40Ni40B20alloy. Physical Review B, 1993, 47, 3118-3125.	3.2	70
15	Kinetics of the amorphousâ€toâ€nanocrystalline transformation in Fe73.5Cu1Nb3Si13.5B9. Journal of Applied Physics, 1993, 74, 3137-3143.	2.5	66
16	Enhancing Li-lon Conductivity in LiBH ₄ -Based Solid Electrolytes by Adding Various Nanosized Oxides. ACS Applied Energy Materials, 2020, 3, 4941-4948.	5.1	61
17	Stripe domains and spin reorientation transition in Fe78B13Si9 thin films produced by rf sputtering. Journal of Applied Physics, 2008, 104, .	2.5	55
18	Structure and Thermodynamic Properties of the NaMgH ₃ Perovskite: A Comprehensive Study. Chemistry of Materials, 2011, 23, 2317-2326.	6.7	54

#	Article	IF	Citations
19	Bromide substitution in lithium borohydride, LiBH4–LiBr. International Journal of Hydrogen Energy, 2011, 36, 15664-15672.	7.1	54
20	Metal (boro-) hydrides for high energy density storage and relevant emerging technologies. International Journal of Hydrogen Energy, 2020, 45, 33687-33730.	7.1	53
21	Thermodynamic analysis of glass formation in Fe-B system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2001, 25, 625-637.	1.6	52
22	Hydrogen–fluorine exchange in NaBH4–NaBF4. Physical Chemistry Chemical Physics, 2013, 15, 18185.	2.8	52
23	Integration of a PEM fuel cell with a metal hydride tank for stationary applications. Journal of Alloys and Compounds, 2015, 645, S338-S342.	5.5	52
24	Metal Hydrides and Related Materials. Energy Carriers for Novel Hydrogen and Electrochemical Storage. Journal of Physical Chemistry C, 2020, 124, 7599-7607.	3.1	52
25	Magnetic Properties of Bulk Metallic Glasses. Advanced Engineering Materials, 2007, 9, 468-474.	3.5	50
26	A thermodynamic assessment of LiBH4. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2012, 39, 80-90.	1.6	48
27	SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells. Journal of Power Sources, 2017, 342, 853-860.	7.8	47
28	Experimental Evidence of Na2[B12H12] and Na Formation in the Desorption Pathway of the 2NaBH4+ MgH2System. Journal of Physical Chemistry C, 2011, 115, 16664-16671.	3.1	46
29	A comparison of energy storage from renewable sources through batteries and fuel cells: A case study in Turin, Italy. International Journal of Hydrogen Energy, 2016, 41, 21427-21438.	7.1	45
30	Room-Temperature Solid-State Lithium-Ion Battery Using a LiBH ₄ –MgO Composite Electrolyte. ACS Applied Energy Materials, 2021, 4, 1228-1236.	5.1	45
31	Driving forces for crystal nucleation in Fe–B liquid and amorphous alloys. Intermetallics, 2003, 11, 1293-1299.	3.9	43
32	Synthesis and Structural Investigation of Zr(BH ₄) ₄ . Journal of Physical Chemistry C, 2012, 116, 20239-20245.	3.1	43
33	Crystallization behaviour of Alî—,Sm amorphous alloys. Materials Science & Department of Alî—,Sm amorphous alloys a	5.6	42
34	Phase Stability and Fast Ion Conductivity in the Hexagonal LiBH ₄ â€"LiBrâ€"LiCl Solid Solution. Chemistry of Materials, 2019, 31, 5133-5144.	6.7	42
35	Effects of BaRuO3 addition on hydrogen desorption in MgH2. Journal of Alloys and Compounds, 2012, 536, S216-S221.	5.5	41
36	"Big cube―phase formation in Zr-based metallic glasses. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 305-310.	5.6	40

#	Article	lF	Citations
37	Non-stoichiometric cementite by rapid solidification of cast iron. Acta Materialia, 2005, 53, 1849-1856.	7.9	40
38	Achieving accurate estimates of fetal gestational age and personalised predictions of fetal growth based on data from an international prospective cohort study: a population-based machine learning study. The Lancet Digital Health, 2020, 2, e368-e375.	12.3	40
39	Niobium pentoxide as promoter in the mixed MgH2/Nb2O5 system for hydrogen storage: a multitechnique investigation of the H2 uptake. Journal of Materials Science, 2007, 42, 7180-7185.	3.7	39
40	Vibrational Properties of MBH < sub > 4 < /sub > and MBF < sub > 4 < /sub > Crystals (M = Li, Na, K): A Combined DFT, Infrared, and Raman Study. Journal of Physical Chemistry C, 2011, 115, 18890-18900.	3.1	39
41	Glass formation and mechanical properties of (Cu50Zr50)100â^xAlx (x=0, 4, 5, 7) bulk metallic glasses. Journal of Alloys and Compounds, 2009, 483, 146-149.	5.5	38
42	Dehydrogenation reactions of 2NaBH4Â+ÂMgH2 system. International Journal of Hydrogen Energy, 2011, 36, 7891-7896.	7.1	38
43	Fuel cell powered octocopter for inspection of mobile cranes: Design, cost analysis and environmental impacts. Applied Energy, 2018, 215, 556-565.	10.1	37
44	Phase selection in Al–TM–RE alloys: nanocrystalline Al versus intermetallics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 574-578.	5.6	36
45	A computational study on the effect of fluorine substitution in LiBH4. Journal of Alloys and Compounds, 2011, 509, S679-S683.	5.5	36
46	Improved ductility of nanocrystalline Fe73.5Nb3Cu1Si13.5B9obtained by direct urrent joule heating. Applied Physics Letters, 1993, 63, 2759-2761.	3.3	35
47	Halide Substitution in Magnesium Borohydride. Journal of Physical Chemistry C, 2012, 116, 12482-12488.	3.1	35
48	Spectroscopic and Structural Characterization of Thermal Decomposition of Î ³ -Mg(BH ₄) ₂ : Dynamic Vacuum versus H ₂ Atmosphere. Journal of Physical Chemistry C, 2015, 119, 25340-25351.	3.1	35
49	Role of hydrogen tanks in the life cycle assessment of fuel cell-based auxiliary power units. Applied Energy, 2018, 215, 1-12.	10.1	35
50	Thermodynamic modelling of Mg(BH4)2. Journal of Alloys and Compounds, 2015, 645, S64-S68.	5.5	34
51	Assessment of the environmental break-even point for deposit return systems through an LCA analysis of single-use and reusable cups. Sustainable Production and Consumption, 2021, 27, 228-241.	11.0	33
52	A DSC study of structural relaxation in metallic glasses prepared with different quenching rates. Journal of Non-Crystalline Solids, 1984, 61-62, 877-882.	3.1	31
53	Copper–cobalt f.c.c. metastable phase prepared by mechanical alloying. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1993, 68, 957-966.	0.6	30
54	Rapid solidification of Cu–Fe–Ni alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 1019-1023.	5.6	30

#	Article	IF	Citations
55	Theoretical and Experimental Study of LiBH4-LiCl Solid Solution. Crystals, 2012, 2, 144-158.	2.2	30
56	Thermodynamic and Kinetics Aspects of High Temperature Oxidation on a 304L Stainless Steel. Oxidation of Metals, 2014, 81, 515-528.	2.1	30
57	Thermodynamic analysis and assessment of the Ce–Ni system. Intermetallics, 2004, 12, 1367-1372.	3.9	29
58	Magnesium- and intermetallic alloys-based hydrides for energy storage: modelling, synthesis and properties. Progress in Energy, 2022, 4, 032007.	10.9	29
59	Crystals and nanocrystals in rapidly solidified Alî—,Sm alloys. Scripta Materialia, 1998, 10, 767-776.	0.5	28
60	Thermodynamic modelling of liquids: CALPHAD approaches and contributions from statistical physics. Physica Status Solidi (B): Basic Research, 2014, 251, 33-52.	1.5	28
61	Combined X-ray and Raman Studies on the Effect of Cobalt Additives on the Decomposition of Magnesium Borohydride. Energies, 2015, 8, 9173-9190.	3.1	28
62	Thermodynamic and ab initio investigation of the Alâ \in "Hâ \in "Mg system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2007, 31, 457-467.	1.6	27
63	Development of nanostructured Mg2Ni alloys for hydrogen storage applications. International Journal of Hydrogen Energy, 2011, 36, 7897-7901.	7.1	27
64	Theoretical and experimental study on Mg(BH4)2–Zn(BH4)2 mixed borohydrides. Journal of Alloys and Compounds, 2013, 580, S282-S286.	5.5	27
65	Developments in the Ni–Nb–Zr amorphous alloy membranes. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	27
66	Effect of microstructure on hydrogen absorption in LaMg2Ni. Intermetallics, 2008, 16, 102-106.	3.9	26
67	Effect of Mg–Nb oxides addition on hydrogen sorption in MgH2. Journal of Alloys and Compounds, 2011, 509, S438-S443.	5.5	26
68	Coupling Solid-State NMR with GIPAW ab Initio Calculations in Metal Hydrides and Borohydrides. Journal of Physical Chemistry C, 2013, 117, 9991-9998.	3.1	26
69	Fast carbon dioxide recycling by reaction with \hat{l}^3 -Mg(BH ₄) ₂ . Physical Chemistry Chemical Physics, 2014, 16, 22482-22486.	2.8	26
70	Metallic and complex hydride-based electrochemical storage of energy. Progress in Energy, 2022, 4, 032001.	10.9	26
71	Enhanced hydrogen uptake/release in 2LiH–MgB 2 composite with titanium additives. International Journal of Hydrogen Energy, 2012, 37, 1604-1612.	7.1	25
72	Hydrogen sorption in the LaNi5-xAlx-H system (0Ââ‰ÂxÂâ‰Â1). Intermetallics, 2015, 62, 7-16.	3.9	25

#	Article	IF	Citations
73	Hydrogen absorption–desorption in CeNi2. Journal of Alloys and Compounds, 2006, 426, 180-185.	5. 5	23
74	A thermodynamic investigation of the LiBH ₄ –NaBH ₄ system. RSC Advances, 2016, 6, 60101-60108.	3.6	23
75	Hydrogen storage in complex hydrides: past activities and new trends. Progress in Energy, 2022, 4, 032009.	10.9	23
76	Role of crystalline precipitates on the mechanical properties of (Cu0.50Zr0.50)100â^'xAlx (x=4, 5, 7) bulk metallic glasses. Journal of Alloys and Compounds, 2011, 509, S99-S104.	5.5	22
77	Halide substitution in Ca(BH ₄) ₂ . RSC Advances, 2014, 4, 4736-4742.	3.6	22
78	Material properties and empirical rate equations for hydrogen sorption reactions in 2 LiNH2–1.1 MgH2–0.1 LiBH4–3Âwt.% ZrCoH3. International Journal of Hydrogen Energy, 2014, 39, 8283-8292.	7.1	22
79	Study of the decomposition of a 0.62LiBH 4 –0.38NaBH 4 mixture. International Journal of Hydrogen Energy, 2017, 42, 22480-22488.	7.1	22
80	Thermodynamics of liquid alloys and glass formation. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1987, 56, 139-146.	0.6	21
81	Nanocrystalline phase formation in amorphous Fe73.5Cu1Nb3Si13.5B9 submitted to conventional annealing and Joule heating. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 179-180, 572-576.	5.6	21
82	Fe-based bulk metallic glasses with Y addition. Journal of Alloys and Compounds, 2007, 434-435, 176-179.	5.5	21
83	Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications. Challenges, 2017, 8, 9.	1.7	21
84	An exact model of d.c. joule heating in amorphous metallic ribbons. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 179-180, 361-365.	5.6	20
85	Calorimetric measurements on some undercooled metals and alloys. Journal of Alloys and Compounds, 1995, 220, 212-216.	5.5	20
86	Magnetic and mechanical properties of rapidly solidified Feî—,Si 6.5 wt% alloys and their interpretation. Journal of Magnetism and Magnetic Materials, 1996, 160, 315-317.	2.3	20
87	Thermodynamic assessment of the H–La–Ni system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33, 162-169.	1.6	20
88	Hydrogen storage of Mg–Zn mixed metal borohydrides. Journal of Alloys and Compounds, 2014, 615, S702-S705.	5.5	20
89	Phase diagrams of the LiBH ₄ â€"NaBH ₄ â€"KBH ₄ system. Physical Chemistry Chemical Physics, 2017, 19, 25071-25079.	2.8	20
90	Experimental and computational investigations on the AlH3/AlF3 system. Journal of Alloys and Compounds, 2011, 509, 10-14.	5.5	19

#	Article	IF	Citations
91	Hydrogen sorption properties of Ternary Mg–Nb–O phases synthesized by solid–state reaction. International Journal of Hydrogen Energy, 2011, 36, 7932-7936.	7.1	19
92	Mechanochemical synthesis of NaBH4 starting from NaH–MgB2 reactive hydride composite system. International Journal of Hydrogen Energy, 2013, 38, 2363-2369.	7.1	19
93	Phase stability and hydrogen desorption in a quinary equimolar mixture of light-metals borohydrides. International Journal of Hydrogen Energy, 2018, 43, 16793-16803.	7.1	19
94	Structural relaxation in metallic glasses. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1990, 61, 715-725.	0.6	18
95	X-Ray absorption spectroscopy and diffraction study of miscible and immiscible binary metallic systems prepared by ball milling. Spectrochimica Acta Part A: Molecular Spectroscopy, 1993, 49, 1331-1344.	0.1	18
96	Nanocrystalline Fe _{73.5} Cu ₁ Nb ₃ Si _{13.5} B ₉ obtained by direct-current Joule heating. Magnetic and mechanical properties. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1993, 68, 853-860.	0.6	18
97	Rapid solidification of immiscible alloys. Journal of Magnetism and Magnetic Materials, 2003, 262, 64-68.	2.3	18
98	Interaction of hydrogen with the \hat{I}^2 -Al3Mg2 complex metallic alloy: Experimental reliability of theoretical predictions. Journal of Alloys and Compounds, 2009, 472, 565-570.	5.5	18
99	Crowdsensing for a sustainable comfort and for energy saving. Energy and Buildings, 2019, 186, 208-220.	6.7	18
100	Structural, morphological and surface chemical features of Al2O3 catalyst supports stabilized with CeO2. Studies in Surface Science and Catalysis, 1995, 96, 361-373.	1.5	17
101	Thermodynamics of Homogeneous Crystal Nucleation in Al-RE Metallic Glasses. Materials Science Forum, 1998, 269-272, 553-558.	0.3	17
102	Modelling of primary bcc-Fe crystal growth in a FeB amorphous alloy. Acta Materialia, 2005, 53, 2231-2239.	7.9	17
103	Magnetic properties and power losses in Fe–Co-based bulk metallic glasses. Journal of Magnetism and Magnetic Materials, 2008, 320, e806-e809.	2.3	17
104	Correlation between Poisson ratio and Mohr–Coulomb coefficient in metallic glasses. Journal of Alloys and Compounds, 2009, 483, 125-131.	5.5	17
105	Solid-state NMR and thermodynamic investigations on LiBH4LiNH2 system. International Journal of Hydrogen Energy, 2016, 41, 14475-14483.	7.1	17
106	Experimental Assessment of Lithium Hydride's Space Radiation Shielding Performance and Monte Carlo Benchmarking. Radiation Research, 2018, 191, 154.	1.5	17
107	Combined DFT and geometrical–topological analysis of Li-ion conductivity in complex hydrides. Inorganic Chemistry Frontiers, 2020, 7, 3115-3125.	6.0	17
108	The effects of quenching conditions on the electrochemical behaviour of Fe34Ni36Cr10P14B6 amorphous alloys. Corrosion Science, 1992, 33, 1227-1241.	6.6	16

#	Article	IF	CITATIONS
109	Growth of crystals from amorphous alloys. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1993, 68, 813-824.	0.6	16
110	Structural and optical properties of Fe1â^'xMxSi2 thin films (M=Co, Mn; 0â‰æâ‰ © .20). Microelectronic Engineering, 2001, 55, 233-241.	2.4	16
111	Thermal stability and instrumented indentation in a Mg60Cu30Y10 bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 387-389, 1012-1017.	5.6	16
112	Microstructures in rapidly solidified AISI 304 interpreted according to phase selection theory. Materials Science & Description of the Company of the Compan	5.6	16
113	Homogenization of Highly Alloyed Cu-Fe-Ni: A Phase Diagram Study. Journal of Phase Equilibria and Diffusion, 2008, 29, 131-135.	1.4	16
114	Analysis of crystallization behavior of Fe ₄₈ C ₁₅ B ₆ bulk metallic glass by synchrotron radiation. Journal of Materials Research, 2008, 23, 2166-2173.	2.6	16
115	Magnetic properties of Fe–Co-based bulk metallic glasses. Journal of Alloys and Compounds, 2009, 483, 608-612.	5.5	16
116	Li ₅ (BH ₄) ₃ NH: Lithium-Rich Mixed Anion Complex Hydride. Journal of Physical Chemistry C, 2017, 121, 11069-11075.	3.1	16
117	High loading Ni/MgO catalysts. Surface characterization by IR spectra of adsorbed CO. Catalysis Today, 1993, 17, 449-458.	4.4	15
118	Formation and stability of Alî—,Nd and Alî—,Ndî—,Fe metallic glasses. Journal of Alloys and Compounds, 1994, 209, 341-349.	5.5	15
119	Hydrogen release and structural transformations in LiNH2–MgH2 systems. Journal of Alloys and Compounds, 2011, 509, S719-S723.	5.5	15
120	Above room temperature heat capacity and phase transition of lithium tetrahydroborate. Thermochimica Acta, 2011, 520, 75-79.	2.7	15
121	Structure, microstructure and microhardness of rapidly solidified Sm y (Fe x Ni 1-x) 4 Sb 12 (x  = 0.45,) Tj E	TQq1 10	.784314 rg <mark>8</mark> 7
122	Thermoelectric Properties of TiNiSn Half Heusler Alloy Obtained by Rapid Solidification and Sintering. Journal of Materials Engineering and Performance, 2018, 27, 6306-6313.	2.5	15
123	Effect of rapid solidification on the synthesis and thermoelectric properties of Yb-filled Co4Sb12 skutterudite. Journal of Alloys and Compounds, 2019, 796, 33-41.	5.5	15
124	Kinetic and thermodynamic aspects of crystallization in Cuî—¸Tiî—¸Ni and Cuî—¸Tiî—¸Al metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 179-180, 371-375.	5.6	14
125	Thermal stability and hardness of Mg–Cu–Au–Y amorphous alloys. Journal of Alloys and Compounds, 2007, 434-435, 183-186.	5.5	14
126	Rapid solidification of silver-rich Ag–Cu–Zr alloys. Journal of Alloys and Compounds, 2012, 536, S148-S153.	5.5	14

#	Article	IF	Citations
127	Structural study of a new B-rich phase obtained by partial hydrogenation of 2NaHÂ+ÂMgB2. International Journal of Hydrogen Energy, 2013, 38, 10479-10484.	7.1	14
128	KNH ₂ –KH: a metal amide–hydride solid solution. Chemical Communications, 2016, 52, 11760-11763.	4.1	14
129	Reactive Hydride Composite of Mg2NiH4 with Borohydrides Eutectic Mixtures. Crystals, 2018, 8, 90.	2.2	14
130	Hydrogen Desorption in Mg(BH4)2-Ca(BH4)2 System. Energies, 2019, 12, 3230.	3.1	14
131	Exploring Ternary and Quaternary Mixtures in the LiBH ₄ â€NaBH ₄ â€KBH ₄ â€Mg(BH ₄) ₂ â€Ca(BH <system. 1348-1359.<="" 20,="" 2019,="" chemphyschem,="" td=""><td>sub,>4k.due:</td><td>ubя)к sub>2<</td></system.>	su b,>4k.d ue:	ubя)к sub>2<
132	Research and development of hydrogen carrier based solutions for hydrogen compression and storage. Progress in Energy, 2022, 4, 042005.	10.9	14
133	An analysis of volume effects in metallic glass formation. Journal of the Less Common Metals, 1988, 145, 31-38.	0.8	13
134	Spectroscopic, structural and microcalorimetric study of stishovite, a non-pathogenic polymorph of SiO2. Journal of Materials Chemistry, 1995, 5, 1935.	6.7	13
135	Texture, hardening and mechanical anisotropy in A.A. 8090-T851 plate. Materials Science & Description of the Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 257, 134-138.	5 . 6	13
136	Rheology of tellurite glasses. Materials Research Bulletin, 2000, 35, 2343-2351.	5.2	13
137	Hydrogen absorption and desorption in nanocrystalline LaMg2Ni. Journal of Alloys and Compounds, 2007, 434-435, 734-737.	5 . 5	13
138	Shear-band propagation in fully amorphous and partially crystallized Mg-based alloys studied by nanoindentation and transmission electron microscopy. Journal of Alloys and Compounds, 2007, 434-435, 48-51.	5 . 5	13
139	Ternary Compounds and Glass Formation in the Cu-Mg-Y System. Advanced Engineering Materials, 2007, 9, 475-479.	3.5	13
140	Phase Diagrams and Glass Formation in Metallic Systems. Advanced Engineering Materials, 2007, 9, 454-467.	3.5	13
141	An investigation of the H2 uptake in Mg–Nb–O ternary phases. International Journal of Hydrogen Energy, 2008, 33, 3085-3090.	7.1	13
142	The interaction of hydrogen with oxidic promoters of hydrogen storage in magnesium hydride. Materials Research Bulletin, 2009, 44, 194-197.	5 . 2	13
143	Amorphous/nanocrystalline composites analysed by the Rietveld method. Journal of Alloys and Compounds, 2010, 495, 377-381.	5.5	13
144	Full dense CoSb 3 single phase with high thermoelectric performance prepared by oscillated cooling method. Scripta Materialia, 2016, 113, 110-113.	5.2	13

#	Article	IF	CITATIONS
145	Preparation of Li-Mg-N-H hydrogen storage materials for an auxiliary power unit. International Journal of Hydrogen Energy, 2017, 42, 17144-17148.	7.1	13
146	Role of secondary phases and thermal cycling on thermoelectric properties of TiNiSn half-Heusler alloy prepared by different processing routes. Intermetallics, 2020, 127, 106988.	3.9	13
147	Detection of Lithium Plating in Li-lon Cell Anodes Using Realistic Automotive Fast-Charge Profiles. Batteries, 2021, 7, 46.	4.5	13
148	Corrosion behaviour of Fe80-xCoxB10Si10 metallic glasses in sulphate and chloride media. Materials and Corrosion - Werkstoffe Und Korrosion, 1993, 44, 98-106.	1.5	12
149	Structural and thermodynamic aspects of glass formation in Cuî—,Tiî—,H: role of hydrogen in mechanical alloying. Journal of Non-Crystalline Solids, 1993, 156-158, 527-531.	3.1	12
150	Electrocatalytic behaviour of Zr64Ni36 and Zr48Ni27Al25 amorphous alloys. Electrochimica Acta, 1994, 39, 1781-1786.	5.2	12
151	Magnetic properties and surface roughness of Fe64Co21B15 amorphous ribbons quenched from different melt temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 326-330.	5.6	12
152	Grain growth and texture in rapidly solidified Fe(Si) 6.5 wt.% ribbons. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 1025-1029.	5 . 6	12
153	Phase separation in multicomponent amorphous alloys. Journal of Non-Crystalline Solids, 1998, 232-234, 127-132.	3.1	12
154	Glass ceramics for optical amplifiers: rheological, thermal, and optical properties. Journal of Non-Crystalline Solids, 1999, 256-257, 170-175.	3.1	12
155	Properties of FeNiB-based metallic glasses with primary BCC and FCC crystallisation products. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 532-534.	2.3	12
156	Magnetic and magnetotransport properties in metastable granular systems. Journal of Alloys and Compounds, 2007, 434-435, 594-597.	5 . 5	12
157	Glass-formation and hardness of Cu–Y alloys. Journal of Alloys and Compounds, 2009, 483, 50-53.	5 . 5	12
158	Effects of chemical composition on nanocrystallization kinetics, microstructure and magnetic properties of finemet-type amorphous alloys. Metals and Materials International, 2013, 19, 643-649.	3.4	12
159	Effect of NaH/MgB2 ratio on the hydrogen absorption kinetics of the system NaHÂ+ÂMgB2. International Journal of Hydrogen Energy, 2014, 39, 5030-5036.	7.1	12
160	Investigation on the Decomposition Enthalpy of Novel Mixed Mg _(1â€"<i>x</i>) Zn _{<i>x</i>)} (BH ₄) ₂ Borohydrides by Means of Periodic DFT Calculations. Journal of Physical Chemistry C, 2014, 118, 23468-23475.	3.1	12
161	Effects of metastability on hydrogen sorption in fluorine substituted hydrides. Journal of Alloys and Compounds, 2014, 615, S706-S710.	5.5	12
162	Theoretical and Experimental Studies of LiBH ₄ â€"LiBr Phase Diagram. ACS Applied Energy Materials, 2021, 4, 7327-7337.	5.1	12

#	Article	IF	CITATIONS
163	Thermal behaviour of Cuî—,Ti and Cuî—,Tiî—,H amorphous powders prepared by ball milling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 134, 1398-1401.	5.6	11
164	Electrical-resistivity evolution in Fe73.5Cu1Nb3Si13.5B9 during the amorphous-to-nanocrystalline transformation. Journal of Non-Crystalline Solids, 1993, 156-158, 585-588.	3.1	11
165	A study of the amorphous-to-nanocrystalline transformation in Fe73.5Cu1Nb3Si13.5B9 through combined measurements of electrical resistivity, mechanical spectroscopy and TEM. Scripta Materialia, 1993, 3, 433-440.	0.5	11
166	Nanostructured materials for soft magnetic applications produced by fast dc Joule heating. IEEE Transactions on Magnetics, 1994, 30, 4797-4799.	2.1	11
167	Hydride phase formation in LaMg2Ni during H2 absorption. Renewable Energy, 2008, 33, 237-240.	8.9	11
168	Influence of structural parameters on magnetoresistive properties of CuFeNi melt spun ribbons. Ultramicroscopy, 2009, 109, 625-630.	1.9	11
169	Thermodynamic Database for Hydrogen Storage Materials. Advances in Science and Technology, 2010, 72, 213-218.	0.2	11
170	Synthesis and characterization of Magnesium-Iron-Cobalt complex hydrides. Scientific Reports, 2020, 10, 9000.	3.3	11
171	Thermodynamic investigation on glass forming Al-RE Systems. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1993, 90, 261-268.	0.2	11
172	Magnetic properties of Ga substituted Ndî—,Feî—,B composite. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 291-292.	2.3	10
173	Surface and electrochemical characterization of Ni–Zr intermetallic compounds. Intermetallics, 2000, 8, 299-304.	3.9	10
174	Influence of Rare-Earth Substitution for Iron in FeCrMoCB Bulk Metallic Glasses. Chinese Physics Letters, 2010, 27, 076103.	3.3	10
175	Sorption and desorption properties of a CaH2/MgB2/CaF2 reactive hydride composite as potential hydrogen storage material. Journal of Solid State Chemistry, 2011, 184, 3104-3109.	2.9	10
176	Solid-State Hydrogen Storage Systems and the Relevance of a Gender Perspective. Energies, 2021, 14, 6158.	3.1	10
177	A resistivity study of crystallization of some FeNiB-based amorphous alloys. Scripta Metallurgica, 1986, 20, 1011-1014.	1.2	9
178	Structural relaxation in metallic glasses. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1987, 56, 177-183.	0.6	9
179	Structural relaxation in FeNiCrPB amorphous alloys by joint isothermal and tempering measurements of the electrical resistivity. Journal of Materials Science, 1988, 23, 4287-4294.	3.7	9
180	An experimental study of thermodynamic properties in a ZBLAN glass-forming system. Materials Science & Science & Properties, Microstructure and Processing, 1991, 133, 584-587.	5.6	9

#	Article	IF	Citations
181	Ball Milling of Cu-Ti-H: Amorphization Reactions and Hydride Stability. Materials Science Forum, 1992, 88-90, 771-778.	0.3	9
182	Undercooling Experiments in a High Temperature Differential Scanning Calorimeter. Materials Research Society Symposia Proceedings, 1995, 398, 81.	0.1	9
183	Nanocrystals through Crystallization of Amorphous Alloys. Materials Science Forum, 1995, 179-181, 597-602.	0.3	9
184	The devitrification of a Zr65CU22Ni5Al8 metallic glass. Journal of Materials Science Letters, 1996, 15, 909-912.	0.5	9
185	Thermal effects due to tempering of austenite and martensite in austempered ductile irons. Materials Science and Technology, 1999, 15, 643-646.	1.6	9
186	Glass formation and magnetic characterization of (Fe78B14Si8)–Nb–Y alloys. Journal of Alloys and Compounds, 2007, 434-435, 628-632.	5.5	9
187	Effect of crystallisation on the magnetic properties of FeCuNbBSi amorphous thin films produced by sputtering. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 3070-3073.	0.8	9
188	Preparation and characterization of Fe-based bulk metallic glasses in plate form. Physica B: Condensed Matter, 2012, 407, 3192-3195.	2.7	9
189	Hydrogen Sorption in the LiH–LiF–MgB ₂ System. Journal of Physical Chemistry C, 2013, 117, 17360-17366.	3.1	9
190	Heat capacity and thermodynamic properties of alkali and alkali-earth borohydrides. Journal of Chemical Thermodynamics, 2020, 143, 106055.	2.0	9
191	Environmental assessment of rubber recycling through an innovative thermo-mechanical devulcanization process using a co-rotating twin-screw extruder. Journal of Cleaner Production, 2022, 348, 131352.	9.3	9
192	Surface characterization of Cu-Ti systems: an IR study. Applied Surface Science, 1993, 70-71, 147-152.	6.1	8
193	Crystallization behaviour of fluorozirconate glasses. Journal of Non-Crystalline Solids, 1993, 161, 60-65.	3.1	8
194	Formation of Nanocrystals from Glassy Fe-Cu-Nb-Si-B. Key Engineering Materials, 1993, 81-83, 177-182.	0.4	8
195	Role of material purity on the structural and magnetic properties of rapidly solidified FeSi 6.5 wt% alloys. Journal of Magnetism and Magnetic Materials, 1994, 133, 366-370.	2.3	8
196	Formation of nanocrystals in amorphous Fe73.5Nb3Cu1Si13.5B9 ribbons produced with different quenching rate. Scripta Materialia, 1996, 7, 619-628.	0.5	8
197	High temperature thermal analysis of Ni-Al alloys around the γ′ composition. Scripta Materialia, 1998, 39, 87-93.	5.2	8
198	Rapid solidification of alloys. International Journal of Materials and Product Technology, 2004, 20, 358.	0.2	8

#	Article	IF	CITATIONS
199	Environmental and economic assessment of hydrogen compression with the metal hydride technology. International Journal of Hydrogen Energy, 2022, 47, 10122-10136.	7.1	8
200	A Review of Mechanical and Chemical Sensors for Automotive Li-lon Battery Systems. Sensors, 2022, 22, 1763.	3.8	8
201	Thermodynamics of the Gd63.2Co36.8 glass-forming eutectic. Scripta Metallurgica, 1987, 21, 849-852.	1.2	7
202	Glass-forming ability of the Al-Ce system: a thermodynamic approach. Journal of Alloys and Compounds, 1992, 184, 139-150.	5 . 5	7
203	Spectroscopic and diffractometric study of the V2O5/TiO2 system prepared viamechanochemical activation. Journal of Materials Chemistry, 1998, 8, 1441-1446.	6.7	7
204	X-ray analysis of microstructure in Au–Fe melt spun alloys. Journal of Magnetism and Magnetic Materials, 2003, 262, 136-141.	2.3	7
205	Synthesis and crystallisation of Fe61Co7Zr10Mo5W2B15 bulk metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 250-254.	5.6	7
206	Microstructure refinement and hardening of Ag–20wt.%Cu alloy by rapid solidification. Journal of Alloys and Compounds, 2014, 615, S633-S637.	5 . 5	7
207	Effect of processing routes on the synthesis and properties of Zn4Sb3 thermoelectric alloy. Journal of Alloys and Compounds, 2015, 653, 54-60.	5.5	7
208	Synthesis and Characterization of Thermoelectric Co2XSn (X = Zr, Hf) Heusler Alloys. Metals, 2020, 10, 624.	2.3	7
209	Simulation of nanosizing effects in the decomposition of Ca(BH4)2 through atomistic thin film models. Research on Chemical Intermediates, 2021, 47, 345-356.	2.7	7
210	Materials for hydrogen storage and the Na-Mg-B-H system. AIMS Energy, 2015, 3, 75-100.	1.9	7
211	Structural relaxation kinetics in FeSiB amorphous alloys. Journal of Materials Science, 1988, 23, 2225-2229.	3.7	6
212	Kinetic analysis of structural relaxation in FeNiCrPB amorphous alloys by electrical resistivity measurements. Materials Science and Engineering, 1988, 97, 537-539.	0.1	6
213	Effect of microcrystal development on the magnetic properties of heat-treated amorphous Fe78B13Si9. Journal of Magnetism and Magnetic Materials, 1990, 83, 347-348.	2.3	6
214	Structural aspects and the anodic behaviour of Fe34Ni36Cr10P14B6 amorphous alloy submitted to different heat treatments. Corrosion Science, 1991, 32, 509-519.	6.6	6
215	Direct evidence of two different structural relaxation processes in amorphous FeNiCrPB. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 133, 518-522.	5.6	6
216	Giant magnetoresistance in Joule heated Cuî—,Co ribbons. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 617-618.	2.3	6

#	Article	IF	CITATIONS
217	Kinetics of Formation of Al Nanocrystals from Amorphous Al-Sm Alloys. Materials Science Forum, 1997, 235-238, 409-414.	0.3	6
218	The influence of annealing atmosphere on the formation of nanocrystals from devitrification of a Ti38.5Cu32Co14Al10Zr5.5 amorphous alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 503-506.	5.6	6
219	A nanocrystalline fcc phase via devitrification of a Ni36Fe32Ta7Si8B17 amorphous alloy. Scripta Materialia, 1999, 11, 747-755.	0.5	6
220	Nucleation and growth of crystals in a ZBLYALiPb glass. Journal of Non-Crystalline Solids, 2001, 289, 144-150.	3.1	6
221	Magnetic and structural characterisation of partially amorphous Nd70Fe20Al10. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1949-E1951.	2.3	6
222	Effect of annealing on the magnetic properties of Nd70Fe20Al10 bulk metallic glasses. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1214-1216.	2.3	6
223	Thermodynamic Tuning of Calcium Hydride by Fluorine Substitution. Materials Research Society Symposia Proceedings, 2012, 1441, 17.	0.1	6
224	Effect of rapid quenching and severe plastic deformation on silver. International Journal of Materials Research, 2012, 103, 1117-1121.	0.3	6
225	Structural and magnetic properties of Fe76P5(Si0.3B0.5C0.2)19 amorphous alloy. Journal of Alloys and Compounds, 2012, 536, S319-S323.	5.5	6
226	Microstructure and magnetic properties of (Fe100â^'xCox)84.5Nb5B8.5P2 alloys. Journal of Alloys and Compounds, 2012, 536, S337-S341.	5. 5	6
227	Kinetic analysis of structural relaxation of Feî—,Ni based amorphous alloys by means of dsc and electrical resistivity measurements. Journal of the Less Common Metals, 1988, 145, 375-381.	0.8	5
228	Magnetic properties of partially crystallized Fe78B14Si8 amorphous alloys. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1990, 61, 579-586.	0.6	5
229	Quenching-rate dependence of the magnetic and mechanical properties of nanocrystalline Fe/sub 73.5/Cu/sub 1/Nb/sub 3/Si/sub 13.5/B/sub 9/ ribbons obtained by Joule heating. IEEE Transactions on Magnetics, 1994, 30, 461-463.	2.1	5
230	Thermodynamics of Nonequilibrium Metallic Materials. Key Engineering Materials, 1995, 103, 1-20.	0.4	5
231	Nucleation and growth of crystals in a ZBLYAN glass. Journal of Non-Crystalline Solids, 1997, 213-214, 79-84.	3.1	5
232	Microstructure and Thermal Stability of 'Nanocrystalline' Electrodeposited Au-Cu Alloys. Materials Science Forum, 2001, 360-362, 253-260.	0.3	5
233	Effects of crystals on the mechanical properties of Zr52.5Ti5Cu17.9Ni14.6Al10 bulk metallic glasses. Annales De Chimie: Science Des Materiaux, 2002, 27, 125-130.	0.4	5
234	Thermodynamic Analysis of the Undercooled Liquid and Glass Transition in the Cu-Mg-Y System. Materials Transactions, 2006, 47, 2950-2955.	1.2	5

#	Article	IF	CITATIONS
235	Nanometer Scale Tomographic Investigation of Fine Scale Precipitates in a CuFeNi Granular System by Three-Dimensional Field Ion Microscopy. Microscopy and Microanalysis, 2012, 18, 1129-1134.	0.4	5
236	Effect of Cr Additions on Structural Relaxation in FeNiPB Amorphous Alloys by Electrical Resistivity*. Zeitschrift Fur Physikalische Chemie, 1988, 157, 341-345.	2.8	4
237	Comparison between electrical resistivity and magnetic anisotropy in partially crystallized Fe78B13Si9 amorphous alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 133, 124-126.	5.6	4
238	The Crystallization of Al-Sm Amorphous Alloys. Materials Science Forum, 1995, 195, 111-116.	0.3	4
239	An X-ray photoelectron spectroscopy study of the surface composition of CoxFe80â^'xSi10B10 metallic glasses. Journal of Alloys and Compounds, 1995, 226, 213-221.	5.5	4
240	Ni-Zr alloys: relationship between surface characteristics and electrocatalytic behavior. Rapid Communications in Mass Spectrometry, 2000, 14, 800-807.	1.5	4
241	Kinetics and Thermodynamics of Bulk Glass Formation in a Zr _{52.5} Cu _{17.9} Ni _{14.6} Al ₁₀ Ti ₅ 5 Alloy. Materials Transactions, 2002, 43, 1907-1912.	1.2	4
242	Cast iron melting and solidification studies by advanced thermal analysis. International Journal of Cast Metals Research, 2003, 16, 87-92.	1.0	4
243	Thermodynamic and Kinetic Modelling of Primary Crystallisation in Amorphous Alloys. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 415-424.	0.1	4
244	Fracture Behavior in Cu46.5Zr46.5Al7 and Cu46.5Zr41.5Al7Y5 Bulk Metallic Glasses. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1767-1774.	2.2	4
245	Rapid solidification of silver-rich Ag–Cu–Zr–Al alloys. Journal of Alloys and Compounds, 2014, 586, S111-S116.	5.5	4
246	Effects of Rapid Solidification on Phase Formation and Microstructure Evolution of AgSbTe ₂ -Based Thermoelectric Compounds. Journal of Nanoscience and Nanotechnology, 2017, 17, 1650-1656.	0.9	4
247	A Thermodynamic Approach to Amorphisation in Metallic Systems. Key Engineering Materials, 1991, 48, 37-46.	0.4	3
248	Behaviour of the Electrical Resistance during Crystallization of Joule-Heated Samples of Amorphous Fe ₄₀ Ni ₄₀ B ₂₀ . Key Engineering Materials, 1993, 81-83, 377-382.	0.4	3
249	Mechanical spectroscopy and analytical TEM of structural transformation in the Fe73.5Cu1Nb3Si13.5B9 alloy. Journal of Magnetism and Magnetic Materials, 1994, 133, 357-361.	2.3	3
250	Solidification experiments for the study of phase selection in cast iron. International Journal of Cast Metals Research, 2003, 16, 125-129.	1.0	3
251	Phase transformations in Au–Fe melt spun alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 468-472.	5.6	3
252	Hydrogen absorption and desorption in rapidly solidified Mg- Al alloys. Journal of Physics: Conference Series, 2009, 144, 012016.	0.4	3

#	Article	IF	CITATIONS
253	NaBX4-MgX2 Composites (X= D,H) Investigated by In situ Neutron Diffraction. Materials Research Society Symposia Proceedings, 2010, 1262, 1.	0.1	3
254	Formation, Time–Temperature–Transformation curves and magnetic properties of FeCoNbSiBP metallic glasses. Journal of Alloys and Compounds, 2015, 619, 437-442.	5.5	3
255	Nanoporous microtubes obtained from a Cu-Ni metallic wire. Metals and Materials International, 2016, 22, 305-310.	3.4	3
256	Itinerant magnetism, electronic properties and half-metallicity of Co2ZrSn and Co2HfSn Heusler alloys. Journal of Alloys and Compounds, 2022, 918, 165464.	5.5	3
257	Enthalpic study of structural relaxation and crystallization in some metallic glasses. Journal of Thermal Analysis, 1985, 30, 1259-1266.	0.6	2
258	Velocity of Sound and Resistivity Measurements on Amorphous FeCrB, FeMnB, and FeNiB during Structural Relaxation. Physica Status Solidi (B): Basic Research, 1993, 179, 315-321.	1.5	2
259	On the Use of Joule Heating Techniques to Produce Nanostructured Magnetic Materials from Melt-Spun Ribbons. Materials Science Forum, 1995, 179-181, 575-580.	0.3	2
260	Electrocatalytic Properties of Ni-Zr Based Amorphous and Nanocrystalline Alloys. Materials Science Forum, 1997, 235-238, 911-916.	0.3	2
261	X-Ray Diffraction Study of Nanocrystalline Phases Formation in Metallic Systems. Materials Science Forum, 1998, 278-281, 559-564.	0.3	2
262	Role of Si concentration on the magnetic and mechanical behavior of rapidly solidified Fe-Si laminations. European Physical Journal Special Topics, 1998, 08, Pr2-531-Pr2-534.	0.2	2
263	Thermodynamics of an Amorphous Alloy Studied by Drop Calorimetry and DSC. Materials Science Forum, 1999, 307, 37-42.	0.3	2
264	Effect of stress on magnetic losses and role of Mn addition in Fe–Si rapidly solidified ribbons. Journal of Magnetism and Magnetic Materials, 2000, 215-216, 127-129.	2.3	2
265	Calorimetry of Undercooled Metals and Alloys. Materials Science Forum, 2000, 329-330, 507-512.	0.3	2
266	Modelling of Nanocrystallisation. Materials Science Forum, 2001, 360-362, 445-450.	0.3	2
267	Magnetization and magnetotransport properties of Cu60Fe20Ni20 systems exhibiting magnetic frustration on the nanometer scale. Journal of Magnetism and Magnetic Materials, 2003, 262, 78-83.	2.3	2
268	Mössbauer investigation of Au/Fe alloys with giant magnetoresistence properties. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1545-1546.	2.3	2
269	Small angle neutron investigation of Au–Fe alloys with GMR behaviour. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1554-1556.	2.3	2
270	Analysis of Melting and Solidification Behaviour of Glass-forming Alloys by Synchrotron Radiation. Advanced Engineering Materials, 2007, 9, 492-495.	3.5	2

#	Article	IF	Citations
271	Preparation and Characterization of Fe-Based Metallic Glasses with Pure and Raw Elements. Chinese Physics Letters, 2012, 29, 118102.	3.3	2
272	Crystallization Behavior of Fe $50\hat{a}$ ° x Cr 15 Mo 14 C 15 B 6 M x (x = 0, 2 and M = Y, Gd) Bulk Metallic Glasses and Ribbons. Chinese Physics Letters, 2012, 29, 108103.	3.3	2
273	EFFECT OF QUENCHING RATE ON THE GLASS TRANSITION AND CRYSTALLIZATION TEMPERATURES OF Fe-B BASED METALLIC GLASSES++Work supported by "CNR-Progetto Finalizzato Metallurgia― , 1985, , 239-242.		2
274	Magnetic and structural properties of nanocrystalline ultrathin Fe83Cu1Nb7B9 submitted to Joule heating. European Physical Journal Special Topics, 1998, 08, Pr2-39-Pr2-42.	0.2	2
275	Formation of Nanophases by Crystallization of Amorphous Alloys. Materials Science Forum, 1995, 195, 73-78.	0.3	1
276	Formation and stability of Alî—,Nd and Alî—,Ndî—,Fe metallic glasses [J. Alloys Comp., 209 (1994) 341]. Journal of Alloys and Compounds, 1995, 218, 267.	5.5	1
277	Magnetic losses and mechanical properties of Fe-4 to 7.8 wt% Si rapidly quenched alloys. IEEE Transactions on Magnetics, 1997, 33, 3802-3804.	2.1	1
278	Logarithmic Relaxation of Resistance in Time of Annealed and Plastically Deformed Au80Fe20. Materials Research Society Symposia Proceedings, 2000, 634, 3101.	0.1	1
279	Modelling of Nanocrystallisation. Journal of Metastable and Nanocrystalline Materials, 2001, 10, 445-450.	0.1	1
280	Nanostructured systems with GMR behaviour. Applied Physics A: Materials Science and Processing, 2002, 74, s886-s888.	2.3	1
281	AN ANALYSIS OF THERMOPHYSICAL AND MECHANICAL PROPERTIES OF GLASS-FORMING ALLOYS. Materials Research Society Symposia Proceedings, 2007, 1048, 8.	0.1	1
282	Editorial: Special Issue "Bulk Metallic Glasses― (Adv. Eng. Mater. 6/2007). Advanced Engineering Materials, 2007, 9, 431-431.	3.5	1
283	Bulk Metallic Glasses. Materials Science Forum, 2008, 604-605, 229-238.	0.3	1
284	Crystallisation process in Mg60Cu30Gd10-xNdx(x = 0, 8.5) amorphous alloys. Journal of Physics: Conference Series, 2009, 144, 012057.	0.4	1
285	Hydrogen Desorption Reactions of the Na-Mg-B-H System. Advances in Science and Technology, 2010, 72, 164-169.	0.2	1
286	Nanoporous Microtubes via Oxidation and Reduction of Cu–Ni Commercial Wires. Metals, 2017, 7, 46.	2.3	1
287	Direct evidence of two different structural relaxation processes in amorphous FeNiCrPB., 1991,, 518-522.		1
288	Evolution of Magnetomechanical and Magnetic Properties of Siliconized Iron-Silicon Alloys by CVD Process Using SiCl4. European Physical Journal Special Topics, 1995, 05, C5-1045-C5-1052.	0.2	1

#	Article	IF	CITATIONS
289	Solidification Calculations of Precious Alloys and Al-Base Alloys for Additive Manufacturing. Metals, 2022, 12, 322.	2.3	1
290	Crystallization of amorphous Co-Nb-Zr sputtered films. Journal of Materials Science Letters, 1986, 5, 806-808.	0.5	0
291	Characterization of powders obtained by comminution of Fe ₄₀ Ni ₄₀ B ₂₀ amorphous ribbons. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1990. 61, 567-577.	0.6	0
292	Mechanical Properties of Fe-6.5%Si Ribbons Produced by Planar Flow Casting. Key Engineering Materials, 1994, 97-98, 49-58.	0.4	0
293	Microstructural and Thermal Analysis of A.A. 8090 Plate Alloy with Crystallographic Texture Gradient. Materials Science Forum, 1996, 217-222, 1067-1072.	0.3	0
294	Thermodynamics of an Amorphous Alloy Studied by Drop Calorimetry and DSC. Journal of Metastable and Nanocrystalline Materials, 1999, 1, 37-42.	0.1	0
295	Amorphisation and Devitrification of Al-Transition Metal- Rare Earth Alloys. Materials Research Society Symposia Proceedings, 2003, 806, 83.	0.1	0
296	Small angle scattering investigation of nanostructured binary Au–Fe alloys. Physica B: Condensed Matter, 2004, 350, E91-E94.	2.7	0
297	Influence of Co Addition on Magnetic Properties and Glass Formation of Fe-based Amorphous Alloys. Materials Research Society Symposia Proceedings, 2007, 1048, 8.	0.1	0
298	Effect of Nb and Y Additions on Glass Formation and Magnetic Properties in the Fe78B14Si8 Alloy. Advanced Engineering Materials, 2007, 9, 480-482.	3. 5	0
299	Magnetic power losses in [(Fe1-xCox)75B20Si5]93Nb4Y3(x= 0, 0.2, 0.4) bulk metallic glasses. Journal of Physics: Conference Series, 2009, 144, 012073.	0.4	0
300	Thermal and Magnetic Properties in (FeBSi)NbY Bulk Glassy Alloys. IEEE Transactions on Magnetics, 2010, 46, 393-396.	2.1	0
301	Hydrogen Absorption/Desorption in Nanostructured Fe- and Ti-Doped Mg ₂ Ni Alloys. Defect and Diffusion Forum, 2010, 297-301, 745-756.	0.4	0
302	Cold rolling of amorphous/crystalline Ag73.2Cu17.1Zr9.7 composite. Journal of Alloys and Compounds, 2014, 615, S79-S84.	5.5	0
303	Effect of Open Die Pressing on the Chemical-Physical Properties of Zn4Sb3 Compound., 2014,, 19-27.		0
304	Kinetic Analysis of Structural Relaxation in FeNiCrPB Amorphous Alloys by Electrical Resistivity Measurements., 1988,, 537-539.		0
305	Comparison between electrical resistivity and magnetic anisotropy in a partially crystallized Fe78B13Si9 amorphous alloy., 1991,, 124-126.		0
306	Magnetic properties of silicon-iron laminations Si-enriched by a SiH4 based CVD process. European Physical Journal Special Topics, 1998, 08, Pr2-535-Pr2-538.	0.2	0