Marco Faccio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3763340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An electronic nose for food analysis. Sensors and Actuators B: Chemical, 1997, 44, 521-526.	7.8	144
2	The application of metalloporphyrins as coating material for quartz microbalance-based chemical sensors. Analytica Chimica Acta, 1996, 325, 53-64.	5.4	140
3	Recognition of fish storage time by a metalloporphyrins-coated QMB sensor array. Measurement Science and Technology, 1996, 7, 1103-1114.	2.6	74
4	Porous Silica-Coated alpha-Fe2O3 Ceramics for Humidity Measurement at Elevated Temperature. Journal of the American Ceramic Society, 1996, 79, 927-937.	3.8	65
5	NO2 gas sensitivity of sol-gel-derived α-Fe2O3 thin films. Thin Solid Films, 1995, 269, 97-101.	1.8	47
6	The influece of water vapour on carbon monoxide sensitivity of α-Fe2O3 microporous ceramic sensors. Sensors and Actuators B: Chemical, 1994, 19, 437-442.	7.8	40
7	Microstructure and electrical properties of an α-hematite ceramic humidity sensor. Sensors and Actuators B: Chemical, 1992, 7, 464-469.	7.8	39
8	Principles and Applications of Ceramic Humidity Sensors. Active and Passive Electronic Components, 1994, 16, 69-87.	0.3	35
9	A new fast method for ladder networks characterization. IEEE Transactions on Circuits and Systems, 1991, 38, 1377-1382.	0.9	29
10	A true random number generator architecture based on a reduced number of FPGA primitives. AEU - International Journal of Electronics and Communications, 2019, 105, 15-23.	2.9	28
11	Microstructure and electrical properties of Si-doped α-Fe2O3 humidity sensor. Sensors and Actuators B: Chemical, 1993, 16, 293-298.	7.8	24
12	An Integrated Approach to the Design of Wireless Sensor Networks for Structural Health Monitoring. International Journal of Distributed Sensor Networks, 2012, 8, 594842.	2.2	24
13	Silica effect on α-Fe2O3 humidity sensor1Presented at the 2nd East Asia Conference on Chemical Sensors, Xi'an, P.R. China, 1995.1. Sensors and Actuators B: Chemical, 1998, 46, 186-193.	7.8	21
14	Design of Wireless Sensor Nodes for Structural Health Monitoring Applications. Procedia Engineering, 2014, 87, 1298-1301.	1.2	21
15	Niobium-doped α-Fe2O3 semiconductor ceramic sensors for the measurement of nitric oxide gases. Sensors and Actuators B: Chemical, 1995, 25, 673-677.	7.8	16
16	A Pulsed Coding Technique Based on Optical UWB Modulation for High Data Rate Low Power Wireless Implantable Biotelemetry. Electronics (Switzerland), 2016, 5, 69.	3.1	16
17	Electronic interface for the accurate read-out of resistive sensors in low voltage–low power integrated systems. Sensors and Actuators A: Physical, 2005, 117, 121-126.	4.1	15
18	Distributed Structural Monitoring for a Smart City in a Seismic Area. Key Engineering Materials, 2014, 628, 123-135.	0.4	11

Marco Faccio

#	Article	IF	CITATIONS
19	Design and validation of a wireless sensor node for long term structural health monitoring. , 2013, , .		10
20	Low cost curvature correction of bandgap references for integrated sensors. Sensors and Actuators A: Physical, 2005, 117, 127-136.	4.1	9
21	A 250Mbps 24pJ/bit UWB-inspired optical communication system for bioimplants. , 2017, , .		9
22	A 300 Mbps 37 pJ/bit UWB-Based Transcutaneous Optical Biotelemetry Link. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 1-1.	4.0	9
23	Impedence analysis and circuit simulation of quartz resonator in water at different temperatures. Sensors and Actuators B: Chemical, 1996, 32, 169-173.	7.8	8
24	A design methodology for soft-core platforms on FPGA with SMP Linux, OpenMP support, and distributed hardware profiling system. Eurasip Journal on Embedded Systems, 2017, 2016, .	1.2	8
25	An Ultra-Wideband-Inspired System-on-Chip for an Optical Bidirectional Transcutaneous Biotelemetry. , 2018, , .		8
26	Design of Digital Satellite Processors: From Communications Link Performance to Hardware Complexity. IEEE Journal on Selected Areas in Communications, 2018, 36, 338-350.	14.0	6
27	Bipolar rail-to-rail constant-gm input stage for low voltage applications. Electronics Letters, 1996, 32, 1467.	1.0	5
28	A Very Low Voltage Bipolar Op-Amp for Sensor Applications. Analog Integrated Circuits and Signal Processing, 1999, 20, 11-23.	1.4	4
29	Software-defined satellite ranging measurements using laboratory signal analyzer. , 2014, , .		4
30	Ladder network characterization and Fibonacci numbers. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1990, 12, 1165-1173.	0.4	3
31	A Fully-Analogue Light-to-Frequency Converter Circuit for Optical Sensing Applications. IEEE Sensors Journal, 2022, 22, 16120-16130.	4.7	3
32	Hydrogen chloride detection by LiTaO3. Sensors and Actuators B: Chemical, 1992, 7, 677-681.	7.8	2
33	Connectivity of pore networks in chemically sensitive materials. Sensors and Actuators B: Chemical, 1995, 25, 865-870.	7.8	2
34	Modeling and performance analysis of advanced detection architectures for ADS-B signals in high interference environments. , 2017, , .		2
35	An FPGA-Based Architecture of True Random Number Generator for Network Security Applications. , 2018, , .		2
36	A New Multilevel Pulsed Modulation Technique for Low Power High Data Rate Optical Biotelemetry. , 2021, , .		2

Marco Faccio

#	Article	IF	CITATIONS
37	Low concentration ammonia detection by LiTaO3. Sensors and Actuators B: Chemical, 1993, 13, 148-150.	7.8	1
38	A New Optical UWB Modulation Technique for 250Mbps Wireless Link in Implantable Biotelemetry Systems. Procedia Engineering, 2016, 168, 1676-1680.	1.2	1
39	Performance modeling, design and FPGA-based validation of digital transparent satellite processors. , 2018, , .		1
40	Performance and Hardware Complexity Trade-offs for Digital Transparent Processors in 5G Satcoms. , 2019, , .		1
41	Analysis and Implementation of Distributed Data Processing in a Wireless Sensor Network for Structural Health Monitoring. Lecture Notes in Electrical Engineering, 2015, , 315-319.	0.4	1
42	A method for the determination of the thermally induced optical and structural changes of polymers used to fabricate lightpipes integrated in CMOS image sensor arrays. Sensors and Actuators A: Physical, 2011, 167, 385-388.	4.1	0
43	A Methodology for Design of Scalable Architectures in Software Radio Networks: a Unified Device and Network Perspective. Journal of Signal Processing Systems, 2013, 73, 315-323.	2.1	Ο
44	An accelerometer digital front end for efficient seismic event detection support in a wireless sensor node. , 2014, , .		0
45	A 0.35μm CMOS 200kHz–2GHz Fully-Analogue Closed-Loop Circuit for Continuous-Time Clock Duty-Cycle Correction in Integrated Digital Systems. , 2018, , .		0
46	A 0.35μm CMOS UWB-Inspired Bidirectional Communication System-on-Chip for Transcutaneous Optical Biotelemetry Links. , 2019, , .		0
47	Fast-Response Paradigm of Si Photodiode Array to Increase the Effective Sensitive Area of Detectors in Wireless Optical Biotelemetry Links. , 2020, , .		0