Christopher Brigham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3762745/publications.pdf

Version: 2024-02-01

45 papers

1,702 citations

304743 22 h-index 289244 40 g-index

48 all docs

48 docs citations

48 times ranked

1745 citing authors

#	Article	IF	CITATIONS
1	Production of poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyhexanoate) by <i>Ralstonia eutropha</i> in high cell density palm oil fermentations. Biotechnology and Bioengineering, 2012, 109, 74-83.	3.3	139
2	Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. Journal of Biotechnology, 2015, 214, 119-127.	3.8	128
3	Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Applied Microbiology and Biotechnology, 2012, 96, 283-297.	3.6	123
4	Elucidation of \hat{I}^2 -Oxidation Pathways in <i>Ralstonia eutropha</i> H16 by Examination of Global Gene Expression. Journal of Bacteriology, 2010, 192, 5454-5464.	2.2	106
5	Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha. Applied Microbiology and Biotechnology, 2010, 87, 2037-2045.	3.6	93
6	Engineered Corynebacterium glutamicum as an endotoxin-free platform strain for lactate-based polyester production. Applied Microbiology and Biotechnology, 2012, 93, 1917-1925.	3.6	85
7	Whole-Genome Microarray and Gene Deletion Studies Reveal Regulation of the Polyhydroxyalkanoate Production Cycle by the Stringent Response in Ralstonia eutropha H16. Applied and Environmental Microbiology, 2012, 78, 8033-8044.	3.1	70
8	Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Applied Microbiology and Biotechnology, 2014, 98, 5461-5469.	3.6	69
9	Sialic Acid (<i>N</i> -Acetyl Neuraminic Acid) Utilization by <i>Bacteroides fragilis</i> Requires a Novel <i>N</i> -Acetyl Mannosamine Epimerase. Journal of Bacteriology, 2009, 191, 3629-3638.	2.2	67
10	Recovery of poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyhexanoate) from <i>Ralstonia eutropha</i> cultures with nonâ€halogenated solvents. Biotechnology and Bioengineering, 2013, 110, 461-470.	3.3	59
11	Improved detergent-based recovery of polyhydroxyalkanoates (PHAs). Biotechnology Letters, 2011, 33, 937-942.	2.2	57
12	Characterization of an extracellular lipase and its chaperone from Ralstonia eutropha H16. Applied Microbiology and Biotechnology, 2013, 97, 2443-2454.	3.6	53
13	Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products. Applied Microbiology and Biotechnology, 2014, 98, 1469-1483.	3.6	53
14	Biopolymers. , 2018, , 753-770.		53
15	Perspectives for the biotechnological production of biofuels from CO2 and H2 using Ralstonia eutropha and other †Knallgas†bacteria. Applied Microbiology and Biotechnology, 2019, 103, 2113-2120.	3.6	47
16	Characterization of the Highly Active Polyhydroxyalkanoate Synthase of Chromobacterium sp. Strain USM2. Applied and Environmental Microbiology, 2011, 77, 2926-2933.	3.1	46
17	Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing a predominant amount of 3-hydroxyvalerate by engineered Escherichia coli expressing propionate-CoA transferase. Journal of Applied Microbiology, 2012, 113, 815-823.	3.1	40
18	Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolymer production from volatile fatty acids using engineered Ralstonia eutropha. International Journal of Biological Macromolecules, 2019, 138, 370-378.	7.5	37

#	Article	IF	CITATIONS
19	Characterization of the RokA and HexA Broad-Substrate-Specificity Hexokinases from Bacteroides fragilis and Their Role in Hexose and N -Acetylglucosamine Utilization. Journal of Bacteriology, 2005, 187, 890-901.	2.2	34
20	Mechanical and biological properties of chitin/polylactide (PLA)/hydroxyapatite (HAP) composites cast using ionic liquid solutions. International Journal of Biological Macromolecules, 2020, 151, 1213-1223.	7.5	34
21	Overexpression of succinyl-CoA synthase for poly (3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) production in engineered <i>Escherichia coli</i> BL21(DE3). Journal of Applied Microbiology, 2015, 119, 724-735.	3.1	32
22	Anti-biofilm Activity of Solvent-Cast and Electrospun Polyhydroxyalkanoate Membranes Treated with Lysozyme. Journal of Polymers and the Environment, 2018, 26, 66-72.	5.0	28
23	Solvent production by engineered Ralstonia eutropha: channeling carbon to biofuel. Applied Microbiology and Biotechnology, 2018, 102, 5021-5031.	3. 6	24
24	Feasibility of triacylglycerol production for biodiesel, utilizing Rhodococcus opacus as a biocatalyst and fishery waste as feedstock. Renewable and Sustainable Energy Reviews, 2016, 56, 922-928.	16.4	23
25	Discarded Egg Yolk as an Alternate Source of Poly(3-Hydroxybutyrate-co-3-hydroxyhexanoate). Journal of Microbiology and Biotechnology, 2019, 29, 382-391.	2.1	22
26	Enhanced microbial lipid production by <i>Cryptococcus albidus</i> in theÂhigh-cell-density continuous cultivation with membrane cell recycling and two-stage nutrient limitation. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 1045-1051.	3.0	19
27	Effects of intracellular poly(3-hydroxybutyrate) reserves on physiological–biochemical properties and growth of Ralstonia eutropha. Research in Microbiology, 2013, 164, 164-171.	2.1	18
28	Fabrication of porous chitin membrane using ionic liquid and subsequent characterization and modelling studies. Carbohydrate Polymers, 2018, 198, 443-451.	10.2	18
29	Chitin and Chitosan: Sustainable, Medically Relevant Biomaterials. International Journal of Biotechnology for Wellness Industries, 2017, 6, 41-47.	0.3	18
30	Application of a non-halogenated solvent, methyl ethyl ketone (MEK) for recovery of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(HB-co-HV)] from bacterial cells. Biotechnology and Bioprocess Engineering, 2015, 20, 291-297.	2.6	14
31	In Vivo and In Vitro Degradation Studies for Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Biopolymer. Journal of Polymers and the Environment, 2017, 25, 296-307.	5.0	13
32	From Beverages to Biofuels: The Journeys of Ethanol-Producing Microorganisms. International Journal of Biotechnology for Wellness Industries, 2014, 3, 79-87.	0.3	13
33	Enhanced isobutanol production by co-production of polyhydroxybutyrate and cofactor engineering. Journal of Biotechnology, 2020, 320, 66-73.	3.8	12
34	Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16. Applied Microbiology and Biotechnology, 2015, 99, 761-774.	3.6	11
35	Experimental evolution and gene knockout studies reveal AcrA-mediated isobutanol tolerance in Ralstonia eutropha. Journal of Bioscience and Bioengineering, 2016, 122, 64-69.	2.2	11
36	Production of branched-chain alcohols by recombinant Ralstonia eutropha in fed-batch cultivation. Biomass and Bioenergy, 2013, 56, 334-341.	5.7	9

#	Article	IF	Citations
37	Thermal and mechanical characterization of solvent-cast poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Journal of Polymer Research, 2015, 22, 1.	2.4	6
38	Properties of solvent-cast chitin membranes and exploration of potential applications. Materialia, 2019, 8, 100452.	2.7	4
39	Draft Genome Sequence of Ralstonia sp. MD27, a Poly(3-Hydroxybutyrate)-Degrading Bacterium, Isolated from Compost. Genome Announcements, 2015, 3, .	0.8	3
40	Isobutanol tolerance in Ralstoniaeutropha. BMC Proceedings, 2014, 8, .	1.6	1
41	Modeling mechanical properties of polyhydroxyalkanoate during degradation in animal tissue. Polymers for Advanced Technologies, 2017, 28, 1879-1883.	3.2	1
42	From Ethanol to Biodiesel., 2018,, 861-879.		1
43	Periplasmic α-carbonic anhydrase plays an essential role in Ralstonia eutropha CO2 metabolism. BMC Proceedings, 2014, 8, .	1.6	O
44	Corrigendum to "Experimental evolution and gene knockout studies reveal AcrA-mediated isobutanol tolerance in Ralstonia eutropha―[J Biosci Bioeng 122 (2016) 64–69]. Journal of Bioscience and Bioengineering, 2017, 123, 658.	2.2	0
45	Development of Controlled Cocultivations for Reproducible Results in Fermentation Processes in Food Biotechnology. , 2018, , 135-165.		O