
Eva Sorensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3762689/publications.pdf Version: 2024-02-01

FVA SODENSEN

#	Article	IF	CITATIONS
1	A general approach to modelling membrane modules. Chemical Engineering Science, 2003, 58, 4975-4990.	3.8	163
2	Implementation and student perceptions of e-assessment in a Chemical Engineering module. European Journal of Engineering Education, 2013, 38, 172-185.	2.3	76
3	Design of high productivity sequential multi-column chromatography for antibody capture. Food and Bioproducts Processing, 2014, 92, 233-241.	3.6	73
4	A multi-layered view of chemical and biochemical engineering. Chemical Engineering Research and Design, 2020, 155, A133-A145.	5.6	58
5	Multivessel batch distillation. AICHE Journal, 1997, 43, 971-978.	3.6	56
6	Optimal operation of multivessel batch distillation columns. AICHE Journal, 1999, 45, 781-801.	3.6	55
7	Review on gas–liquid separations in microchannel devices. Chemical Engineering Research and Design, 2013, 91, 1941-1953.	5.6	55
8	The optimal design of membrane systems. Chemical Engineering Science, 2003, 58, 4991-5004.	3.8	54
9	A model based approach for identifying robust operating conditions for industrial chromatography with process variability. Chemical Engineering Science, 2014, 116, 284-295.	3.8	45
10	Total reflux operation of multivessel batch distillation. Computers and Chemical Engineering, 1996, 20, S1041-S1046.	3.8	43
11	Optimal design and operation of continuous ultrafiltration plants. Journal of Membrane Science, 2004, 235, 131-138.	8.2	38
12	Modelling of industrial biopharmaceutical multicomponent chromatography. Chemical Engineering Research and Design, 2014, 92, 1304-1314.	5.6	37
13	Simultaneous optimal design and operation of multipurpose batch distillation columns. Chemical Engineering and Processing: Process Intensification, 2004, 43, 273-289.	3.6	28
14	Control strategies for reactive batch distillation. Journal of Process Control, 1994, 4, 205-217.	3.3	27
15	Towards an understanding of the effects of operating conditions on separation by microfluidic distillation. Chemical Engineering Science, 2011, 66, 2098-2106.	3.8	25
16	A cyclic operating policy for batch distillation–theory and practice. Computers and Chemical Engineering, 1999, 23, 533-542.	3.8	24
17	Simultaneous optimal configuration, design and operation of batch distillation. AICHE Journal, 2005, 51, 1700-1713.	3.6	22
18	Simultaneous optimal synthesis, design and operation of batch and continuous hybrid separation processes. Chemical Engineering Research and Design, 2008, 86, 279-298.	5.6	22

Eva Sorensen

#	Article	IF	CITATIONS
19	A systematic approach for modeling chromatographic processes—Application to protein purification. AICHE Journal, 2008, 54, 965-977.	3.6	21
20	Experimental verification and optimisation of a detailed dynamic high performance liquid chromatography column model. Computers and Chemical Engineering, 2001, 25, 893-903.	3.8	19
21	Optimal operating policies for closed-loop recycling HPLC processes. Chemical Engineering Science, 2003, 58, 4145-4158.	3.8	19
22	Multi-objective optimisation of batch separation processes. Chemical Engineering and Processing: Process Intensification, 2008, 47, 2303-2314.	3.6	18
23	Mathematical modelling of water absorption and evaporation in a pharmaceutical tablet during film coating. Chemical Engineering Science, 2018, 175, 40-55.	3.8	18
24	Modelling of Direct Contact Membrane Distillation for Desalination. Computer Aided Chemical Engineering, 2010, 28, 649-654.	0.5	15
25	Optimal Economic Design and Operation of Single- and Multi-column Chromatographic Processes. Biotechnology Progress, 2008, 24, 389-401.	2.6	11
26	Multi-objective optimisation of batch distillation processes. Computer Aided Chemical Engineering, 2006, 21, 955-960.	0.5	9
27	Dynamic modelling of aqueous two-phase systems to quantify the impact of bioprocess design, operation and variability. Food and Bioproducts Processing, 2018, 107, 10-24.	3.6	8
28	Recent advances in modelling and control of liquid chromatography. Current Opinion in Chemical Engineering, 2021, 32, 100685.	7.8	7
29	A modelling approach to assessing the feasibility of the integration of power stations with steam electrolysers. Chemical Engineering Research and Design, 2014, 92, 1988-2005.	5.6	6
30	Detailed mathematical modelling of membrane modules. Computer Aided Chemical Engineering, 2000, 8, 523-528.	0.5	5
31	Hydrodynamic Characterization of Phase Separation in Devices with Microfabricated Capillaries. Langmuir, 2019, 35, 8199-8209.	3.5	5
32	Mathematical Modeling of Spray Impingement and Film Formation on Pharmaceutical Tablets during Coating. Chemical Engineering Research and Design, 2020, 153, 768-788.	5.6	5
33	A model for the fluid dynamic behavior of a film coating suspension during tablet coating. Chemical Engineering Research and Design, 2020, 160, 301-320.	5.6	5
34	Analysis and design of paint manufacturing processes. Computers and Chemical Engineering, 1998, 22, S279-S282.	3.8	4
35	Reflections on inherently embedding safety teaching within a chemical engineering programme. Education for Chemical Engineers, 2021, 37, 11-21.	4.8	4
36	A shortcut design method for complex distillation structures. Chemical Engineering Research and Design, 2022, 180, 346-368.	5.6	4

Eva Sorensen

#	Article	IF	CITATIONS
37	A model based approach to an adaptive design space in chromatography. Computer Aided Chemical Engineering, 2013, 32, 115-120.	0.5	3
38	Reflections on the development of scenario and problem-based chemical engineering projects. Computer Aided Chemical Engineering, 2021, 50, 2033-2038.	0.5	3
39	An investigation of the interactions between system characteristics and controllability for reactive distillation systems. Chemical Engineering and Processing: Process Intensification, 2022, 171, 108712.	3.6	3
40	Modeling of spreading and drying of aqueous polymer coatings on pharmaceutical tablets during film coating. Computer Aided Chemical Engineering, 2018, 44, 2095-2100.	0.5	2
41	Process-oriented approach towards catalyst design and optimisation. Catalysis Communications, 2022, 163, 106392.	3.3	2
42	Simulation of supported liquid membranes in hollow fibre configuration. Computer Aided Chemical Engineering, 2003, 14, 659-664.	0.5	1
43	Design and Operation ofÂBatch Distillation. , 2014, , 187-224.		1
44	Dynamic Simulation of a Batch Aqueous Two-Phase Extraction Process for α-Amylase. Computer Aided Chemical Engineering, 2015, 37, 713-718.	0.5	1
45	Reflections on embedding safety throughout the process engineering program. Computer Aided Chemical Engineering, 2018, 44, 1633-1638.	0.5	1
46	Optimal design and operation of batch ultrafiltration systems. Computer Aided Chemical Engineering, 2003, 14, 149-154.	0.5	0
47	A framework to evaluate the impact of uncertainty on design and operation of reactive distillation systems. Chemical Engineering Science, 2022, 251, 117485.	3.8	Ο