
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3762483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chitin synthase 1 and five cuticle protein genes are involved in serosal cuticle formation during early embryogenesis to enhance eggshells in <i>Nilaparvata lugens</i> . Insect Science, 2022, 29, 363-378.	3.0	19
2	Musca domestica (Diptera: Muscidae) as a biological model for the assessment of magnetite nanoparticles toxicity. Science of the Total Environment, 2022, 806, 151483.	8.0	11
3	The <scp>DOMON</scp> domain protein <scp>LmKnk</scp> contributes to correct chitin content, pore canal formation and lipid deposition in the cuticle of <i>Locusta migratoria</i> during moulting. Insect Molecular Biology, 2022, 31, 127-138.	2.0	3
4	Structural basis for diamide modulation of ryanodine receptor. Journal of General Physiology, 2022, 154, .	1.9	0
5	Xenobiotic responses in insects. Archives of Insect Biochemistry and Physiology, 2022, 109, e21869.	1.5	24
6	Autophagy–mediated plasma membrane removal promotes the formation of epithelial syncytia. EMBO Journal, 2022, 41, e109992.	7.8	11
7	Imidacloprid-induced pathophysiological damage in the midgut of Locusta migratoria (Orthoptera:) Tj ETQq1 1	. 0.784314 r	gBT /Overloc
8	CYP311A1 in the anterior midgut is involved in lipid distribution and microvillus integrity in Drosophila melanogaster. Cellular and Molecular Life Sciences, 2022, 79, 261.	5.4	3
9	Fluorescent Microscopy-Based Detection of Chitin in Intact Drosophila melanogaster. Frontiers in Physiology, 2022, 13, 856369.	2.8	4
10	Roles of LmCDA1 and LmCDA2 in cuticle formation in the foregut and hindgut of <i>Locusta migratoria</i> . Insect Science, 2021, 28, 1314-1325.	3.0	9
11	Toxicity of Dithiothreitol (DTT) to Drosophila melanogaster. Toxicology Reports, 2021, 8, 124-130.	3.3	14
12	Three-dimensional reconstruction of a whole insect reveals its phloem sap-sucking mechanism at nano-resolution. ELife, 2021, 10, .	6.0	16
13	Three-dimensional reconstruction of pore canals in the cuticle of the brown planthopper. Science China Life Sciences, 2021, 64, 1992-1994.	4.9	3
14	Ecoâ€genetics of desiccation resistance in <i>Drosophila</i> . Biological Reviews, 2021, 96, 1421-1440.	10.4	18
15	A lateral oviduct secreted protein plays a vital role for egg movement through the female reproductive tract in the brown planthopper. Insect Biochemistry and Molecular Biology, 2021, 132, 103555.	2.7	6
16	Group I CDAs are responsible for a selective CHC-independent cuticular barrier in Locusta migratoria. Pesticide Biochemistry and Physiology, 2021, 175, 104854.	3.6	5
17	Ratio between Lactobacillus plantarum and Acetobacter pomorum on the surface of Drosophila melanogaster adult flies depends on cuticle melanisation. BMC Research Notes, 2021, 14, 351.	1.4	3
18	Flexible manipulation of Omb levels in the endogenous expression region of <i>Drosophila</i> wing by combinational overexpression and suppression strategy. Insect Science, 2020, 27, 14-21.	3.0	5

#	Article	IF	CITATIONS
19	Cover Image, Volume 76, Issue 7. Pest Management Science, 2020, 76, i.	3.4	О
20	Two fatty acid synthase genes from the integument contribute to cuticular hydrocarbon biosynthesis and cuticle permeability in <scp><i>Locusta migratoria</i></scp> . Insect Molecular Biology, 2020, 29, 555-568.	2.0	14
21	Transcriptional Control of Quality Differences in the Lipid-Based Cuticle Barrier in Drosophila suzukii and Drosophila melanogaster. Frontiers in Genetics, 2020, 11, 887.	2.3	14
22	Structural basis for diamide modulation of ryanodine receptor. Nature Chemical Biology, 2020, 16, 1246-1254.	8.0	75
23	Resilin matrix distribution, variability and function in Drosophila. BMC Biology, 2020, 18, 195.	3.8	23
24	Effect of RNAi â€mediated silencing of two Knickkopf family genes (LmKnk2 and LmKnk3) on cuticle formation and insecticide susceptibility in Locusta migratoria. Pest Management Science, 2020, 76, 2907-2917.	3.4	3
25	Chitinase 10 controls chitin amounts and organization in the wing cuticle of <i>Drosophila</i> . Insect Science, 2020, 27, 1198-1207.	3.0	37
26	Apolipophorin-II/I Contributes to Cuticular Hydrocarbon Transport and Cuticle Barrier Construction in Locusta migratoria. Frontiers in Physiology, 2020, 11, 790.	2.8	9
27	Ten fatty acylâ€CoA reductase family genes were essential for the survival of the destructive rice pest, <scp>Nilaparvata lugens</scp> . Pest Management Science, 2020, 76, 2304-2315.	3.4	16
28	Epidermal Cell Surface Structure and Chitin–Protein Co-assembly Determine Fiber Architecture in the Locust Cuticle. ACS Applied Materials & Interfaces, 2020, 12, 25581-25590.	8.0	22
29	The fatty acid elongase gene LmELO7 is required for hydrocarbon biosynthesis and cuticle permeability in the migratory locust, Locusta migratoria. Journal of Insect Physiology, 2020, 123, 104052.	2.0	12
30	Tweedle proteins form extracellular two-dimensional structures defining body and cell shape in <i>Drosophila melanogaster</i> . Open Biology, 2020, 10, 200214.	3.6	10
31	Dysfunction of Oskyddad causes Harlequin-type ichthyosis-like defects in Drosophila melanogaster. PLoS Genetics, 2020, 16, e1008363.	3.5	25
32	Drosophila, Chitin and Insect Pest Management. Current Pharmaceutical Design, 2020, 26, 3546-3553.	1.9	4
33	The wing-specific cuticular protein LmACP7 is essential for normal wing morphogenesis in the migratory locust. Insect Biochemistry and Molecular Biology, 2019, 112, 103206.	2.7	27
34	Inhibition of fatty acid desaturation impairs cuticle differentiation in <i>Drosophila melanogaster</i> . Archives of Insect Biochemistry and Physiology, 2019, 100, e21535.	1.5	4
35	Chitin: Structure, Chemistry and Biology. Advances in Experimental Medicine and Biology, 2019, 1142, 5-18.	1.6	59
36	The putative chitin deacetylases Serpentine and Vermiform have non-redundant functions during Drosophila wing development. Insect Biochemistry and Molecular Biology, 2019, 110, 128-135.	2.7	28

#	Article	IF	CITATIONS
37	The fatty acid elongase gene family in the brown planthopper, Nilaparvata lugens. Insect Biochemistry and Molecular Biology, 2019, 108, 32-43.	2.7	28
38	The putative C-type lectin Schlaff ensures epidermal barrier compactness in Drosophila. Scientific Reports, 2019, 9, 5374.	3.3	15
39	LmCDA1 organizes the cuticle by chitin deacetylation in <i>Locusta migratoria</i> . Insect Molecular Biology, 2019, 28, 301-312.	2.0	35
40	The cuticle inward barrier in <i>Drosophila melanogaster</i> is shaped by mitochondrial and nuclear genotypes and a sex-specific effect of diet. PeerJ, 2019, 7, e7802.	2.0	12
41	Trynity models a tube valve in the Drosophila larval airway system. Developmental Biology, 2018, 437, 75-83.	2.0	6
42	Future questions in insect chitin biology: A microreview. Archives of Insect Biochemistry and Physiology, 2018, 98, e21454.	1.5	14
43	The ABC transporter Snu and the extracellular protein Snsl cooperate in the formation of the lipid-based inward and outward barrier in the skin of Drosophila. European Journal of Cell Biology, 2018, 97, 90-101.	3.6	45
44	A comprehensive omics analysis and functional survey of cuticular proteins in the brown planthopper. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5175-5180.	7.1	99
45	Nuclear receptor HR3 controls locust molt by regulating chitin synthesis and degradation genes of Locusta migratoria. Insect Biochemistry and Molecular Biology, 2018, 92, 1-11.	2.7	59
46	LmCht5-1 promotes pro-nymphal molting during locust embryonic development. Insect Biochemistry and Molecular Biology, 2018, 101, 124-130.	2.7	21
47	The fruit fly Drosophila melanogaster as an innovative preclinical ADME model for solute carrier membrane transporters, with consequences for pharmacology and drug therapy. Drug Discovery Today, 2018, 23, 1746-1760.	6.4	10
48	Cuticular body hairs mediate clumping of small Camponotus floridanus larvae. Arthropod Structure and Development, 2017, 46, 108-115.	1.4	3
49	The arthropod cuticle – A never-ending endeavor. Arthropod Structure and Development, 2017, 46, 2-3.	1.4	Ο
50	Double cuticle barrier in two global pests, the whitefly <i>Trialeurodes vaporariorum</i> and the bedbug <i>Cimex lectularius</i> . Journal of Experimental Biology, 2017, 220, 1396-1399.	1.7	33
51	The ABC transporter ABCH-9C is needed for cuticle barrier construction in Locusta migratoria. Insect Biochemistry and Molecular Biology, 2017, 87, 90-99.	2.7	49
52	Timed Knickkopf function is essential for wing cuticle formation in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 2017, 89, 1-10.	2.7	18
53	Boudin trafficking reveals the dynamic internalisation of specific septate junction components in Drosophila. PLoS ONE, 2017, 12, e0185897.	2.5	12
54	INHIBITION OF FATTY ACID DESATURASES IN <i>Drosophila melanogaster</i> LARVAE BLOCKS FEEDING AND DEVELOPMENTAL PROGRESSION. Archives of Insect Biochemistry and Physiology, 2016, 92, 6-23.	1.5	15

#	Article	IF	CITATIONS
55	LmCYP4G102: An oenocyte-specific cytochrome P450 gene required for cuticular waterproofing in the migratory locust, Locusta migratoria. Scientific Reports, 2016, 6, 29980.	3.3	50
56	Taking peer review seriously. EMBO Reports, 2016, 17, 617-617.	4.5	1
57	Regionalization of surface lipids in insects. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152994.	2.6	51
58	Molecular Model of Skeletal Organization and Differentiation. , 2016, , 67-87.		3
59	<i>Drosophila</i> Kette/Nap1/Hem-2 coordinates myoblast junction dissolution and the Scar-WASp ratio during myoblast fusion. Journal of Cell Science, 2016, 129, 3426-36.	2.0	11
60	Composite Eggshell Matrices: Chorionic Layers and Sub-chorionic Cuticular Envelopes. , 2016, , 325-366.		19
61	Helicoidal Organization of Chitin in the Cuticle of the Migratory Locust Requires the Function of the Chitin Deacetylase2 Enzyme (LmCDA2). Journal of Biological Chemistry, 2016, 291, 24352-24363.	3.4	73
62	Insulin and TOR signal in parallel through FOXO and S6K to promote epithelial wound healing. Nature Communications, 2016, 7, 12972.	12.8	52
63	<i>Drosophila</i> chitinous aECM and its cellular interactions during tracheal development. Developmental Dynamics, 2016, 245, 259-267.	1.8	40
64	A feedback mechanism converts individual cell features into a supracellular ECM structure in Drosophila trachea. ELife, 2016, 5, .	6.0	52
65	Differentiated muscles are mandatory for gas-filling of the Drosophila airway system. Biology Open, 2015, 4, 1753-1761.	1.2	2
66	Report on <scp> <i>D</i></scp> <i>rosophila melanogaster</i> larvae without functional tracheae. Journal of Zoology, 2015, 296, 139-145.	1.7	16
67	The Triple-Repeat Protein Anakonda Controls Epithelial Tricellular Junction Formation in Drosophila. Developmental Cell, 2015, 33, 535-548.	7.0	72
68	Deciphering the Genetic Programme Triggering Timely and Spatially-Regulated Chitin Deposition. PLoS Genetics, 2015, 11, e1004939.	3.5	49
69	Knickkopf and retroactive proteins are required for formation of laminar serosal procuticle during embryonic development of Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2015, 60, 1-6.	2.7	22
70	Pri peptides are mediators of ecdysone for the temporal control of development. Nature Cell Biology, 2014, 16, 1035-1044.	10.3	88
71	Functional Specialization Among Members Of Knickkopf Family Of Proteins In Insect Cuticle Organization. PLoS Genetics, 2014, 10, e1004537.	3.5	19
72	THE KNICKKOPF DOMON DOMAIN IS ESSENTIAL FOR CUTICLE DIFFERENTIATION IN <i>Drosophila melanogaster</i> . Archives of Insect Biochemistry and Physiology, 2014, 86, 100-106.	1.5	8

#	Article	IF	CITATIONS
73	Putative orthologues of genetically identified Drosophila melanogaster chitin producing and organising genes in Apis mellifera. Apidologie, 2014, 45, 733-747.	2.0	6
74	The sulfonylurea receptor Sur is dispensable for chitin synthesis in <i>Drosophila melanogaster</i> embryos. Pest Management Science, 2013, 69, 1136-1140.	3.4	25
75	The apical plasma membrane of chitinâ€synthesizing epithelia. Insect Science, 2013, 20, 139-146.	3.0	37
76	A functional role of the extracellular domain of Crumbs in cell architecture and apicobasal polarity. Journal of Cell Science, 2013, 126, 2157-63.	2.0	41
77	Retroactive Maintains Cuticle Integrity by Promoting the Trafficking of Knickkopf into the Procuticle of Tribolium castaneum. PLoS Genetics, 2013, 9, e1003268.	3.5	34
78	The Arthropod Cuticle. , 2013, , 171-196.		31
79	δ-Aminolevulinate synthase is required for apical transcellular barrier formation in the skin of the Drosophila larva. European Journal of Cell Biology, 2012, 91, 204-215.	3.6	23
80	The transcription factor Grainy head and the steroid hormone ecdysone cooperate during differentiation of the skin of <i>Drosophila melanogaster</i> . Insect Molecular Biology, 2012, 21, 283-295.	2.0	36
81	The apical plasma membrane of chitin-synthesising epithelia. Insect Science, 2012, , no-no.	3.0	0
82	Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17028-17033.	7.1	106
83	The Alg5 ortholog WollknÃ ¤ el is essential for correct epidermal differentiation during Drosophila late embryogenesis. Glycobiology, 2011, 21, 743-756.	2.5	13
84	The apical plasma membrane of Drosophila embryonic epithelia. European Journal of Cell Biology, 2010, 89, 208-211.	3.6	15
85	Localization and Activation of the Drosophila Protease Easter Require the ER-Resident Saposin-like Protein Seele. Current Biology, 2010, 20, 1953-1958.	3.9	10
86	Trafficking through COPII Stabilises Cell Polarity and Drives Secretion during Drosophila Epidermal Differentiation. PLoS ONE, 2010, 5, e10802.	2.5	46
87	Tissue-autonomous EcR functions are required for concurrent organ morphogenesis in the Drosophila embryo. Mechanisms of Development, 2010, 127, 308-319.	1.7	33
88	Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochemistry and Molecular Biology, 2010, 40, 363-375.	2.7	373
89	Kinase-activity-independent functions of atypical protein kinase C in Drosophila. Journal of Cell Science, 2009, 122, 3759-3771.	2.0	67
90	Effects of benzoylphenylurea on chitin synthesis and orientation in the cuticle of the Drosophila larva. European Journal of Cell Biology, 2009, 88, 167-180.	3.6	77

#	Article	IF	CITATIONS
91	<i>Drosophila</i> multiplexin (Dmp) modulates motor axon pathfinding accuracy. Development Growth and Differentiation, 2009, 51, 483-498.	1.5	51
92	Cuticle differentiation in the embryo of the amphipod crustacean Parhyale hawaiensis. Cell and Tissue Research, 2008, 332, 359-370.	2.9	21
93	The role of GlcNAc in formation and function of extracellular matrices. Comparative Biochemistry and Molecular Biology, 2008, 149, 215-226.	1.6	60
94	Wollknaì^uel is required for embryo patterning and encodes the <i>Drosophila</i> ALG5 UDP-glucose:dolichyl-phosphate glucosyltransferase. Development (Cambridge), 2008, 135, 1745-1749.	2.5	16
95	Drosophila Brakeless Interacts with Atrophin and Is Required for Tailless-Mediated Transcriptional Repression in Early Embryos. PLoS Biology, 2007, 5, e145.	5.6	36
96	Assembly of the Drosophila larval exoskeleton requires controlled secretion and shaping of the apical plasma membrane. Matrix Biology, 2007, 26, 337-347.	3.6	38
97	Cuticle differentiation during Drosophila embryogenesis. Arthropod Structure and Development, 2006, 35, 137-152.	1.4	121
98	Drosophila Knickkopf and Retroactive are needed for epithelial tube growth and cuticle differentiation through their specific requirement for chitin filament organization. Development (Cambridge), 2006, 133, 163-171.	2.5	148
99	Hormonal regulation of mummy is needed for apical extracellular matrix formation and epithelial morphogenesis in Drosophila. Development (Cambridge), 2006, 133, 331-341.	2.5	72
100	Dorsoventral Axis Formation in the Drosophila Embryo—Shaping and Transducing a Morphogen Gradient. Current Biology, 2005, 15, R887-R899.	3.9	214
101	Retroactive, a membrane-anchored extracellular protein related to vertebrate snake neurotoxin-like proteins, is required for cuticle organization in the larva ofDrosophila melanogaster. Developmental Dynamics, 2005, 233, 1056-1063.	1.8	43
102	An ancient control of epithelial barrier formation and wound healing. BioEssays, 2005, 27, 987-990.	2.5	30
103	Involvement of chitin in exoskeleton morphogenesis inDrosophila melanogaster. Journal of Morphology, 2005, 264, 117-130.	1.2	184
104	An F1 Genetic Screen for Maternal-Effect Mutations Affecting Embryonic Pattern Formation in Drosophila melanogaster. Genetics, 2004, 167, 325-342.	2.9	85
105	ZWILLE buffers meristem stability in Arabidopsis thaliana. Development Genes and Evolution, 2003, 213, 534-540.	0.9	27
106	Krapfen/dMyd88 is required for the establishment of dorsoventral pattern in the Drosophila embryo. Mechanisms of Development, 2003, 120, 219-226.	1.7	43
107	Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO Journal, 1998, 17, 1799-1809.	7.8	342
108	The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant Journal, 1996, 10, 967-979.	5.7	445

#	Article	IF	CITATIONS
109	<i>Resilin</i> is needed for wing posture in <i>Drosophila suzukii</i> . Archives of Insect Biochemistry and Physiology, 0, , .	1.5	4