
Katarzyna Roszek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3762325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of Graphene Oxide Adsorption Space by Lysozyme Uptake─Mechanistic Studies. Journal of Physical Chemistry B, 2022, 126, 928-933.	2.6	5
2	Solvothermally-derived nanoglass as a highly bioactive material. Nanoscale, 2022, 14, 5514-5528.	5.6	6
3	Underestimated Properties of Nanosized Amorphous Titanium Dioxide. International Journal of Molecular Sciences, 2022, 23, 2460.	4.1	4
4	The Oxime Ethers with Heterocyclic, Alicyclic and Aromatic Moiety as Potential Anti-Cancer Agents. Molecules, 2022, 27, 1374.	3.8	4
5	Phenolipids as new food additives: from synthesis to cell-based biological activities. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2022, 39, 1365-1379.	2.3	5
6	Effect of ZnO on sol–gel glass properties toward (bio)application. Polyhedron, 2022, 223, 115952.	2.2	1
7	MOF materials as therapeutic agents, drug carriers, imaging agents and biosensors in cancer biomedicine: Recent advances and perspectives. Progress in Materials Science, 2021, 117, 100743.	32.8	120
8	Assessment of Titanate Nanolayers in Terms of Their Physicochemical and Biological Properties. Materials, 2021, 14, 806.	2.9	10
9	The adenosinergic pathway in mesenchymal stem cell fate and functions. Medicinal Research Reviews, 2021, 41, 2316-2349.	10.5	10
10	A New Approach to Obtaining Nano-Sized Graphene Oxide for Biomedical Applications. Materials, 2021, 14, 1327.	2.9	5
11	New Insight into the Fluorescence Quenching of Nitrogen-Containing Carbonaceous Quantum Dots—From Surface Chemistry to Biomedical Applications. Materials, 2021, 14, 2454.	2.9	13
12	Protein Corona Hinders N-CQDs Oxidative Potential and Favors Their Application as Nanobiocatalytic System. International Journal of Molecular Sciences, 2021, 22, 8136.	4.1	7
13	Porphyrin Based 2D-MOF Structures as Dual-Kinetic Sorafenib Nanocarriers for Hepatoma Treatment. International Journal of Molecular Sciences, 2021, 22, 11161.	4.1	6
14	Fluorescent Chitosan Modified with Heterocyclic Aromatic Dyes. Materials, 2021, 14, 6429.	2.9	3
15	Cytotoxic or Not? Disclosing the Toxic Nature of Carbonaceous Nanomaterials through Nano–Bio Interactions. Materials, 2020, 13, 2060.	2.9	18
16	In Vitro Studies on Nanoporous, Nanotubular and Nanosponge-Like Titania Coatings, with the Use of Adipose-Derived Stem Cells. Materials, 2020, 13, 1574.	2.9	14
17	Carbonaceous Nanomaterials-Mediated Defense Against Oxidative Stress. Mini-Reviews in Medicinal Chemistry, 2020, 20, 294-307.	2.4	3
18	How to influence the mesenchymal stem cells fate? Emerging role of ectoenzymes metabolizing nucleotides. Journal of Cellular Physiology, 2019, 234, 320-334.	4.1	17

KATARZYNA ROSZEK

#	Article	IF	CITATIONS
19	New strategy of controlled, stepwise release from novel MBioF and its potential application for drug delivery systems. Adsorption, 2019, 25, 383-391.	3.0	3
20	Titania Nanofiber Scaffolds with Enhanced Biointegration Activity—Preliminary In Vitro Studies. International Journal of Molecular Sciences, 2019, 20, 5642.	4.1	12
21	Novel biocatalytic systems for maintaining the nucleotide balance based on adenylate kinase immobilized on carbon nanostructures. Materials Science and Engineering C, 2018, 88, 130-139.	7.3	15
22	Cystine-based MBioF for Maintaining the Antioxidant–Oxidant Balance in Airway Diseases. ACS Medicinal Chemistry Letters, 2018, 9, 1280-1284.	2.8	6
23	Graphene Oxide-Mediated Protection from Photodamage. Journal of Physical Chemistry Letters, 2018, 9, 3241-3244.	4.6	16
24	Chemical and Biochemical Approach to Make a Perfect Biocatalytic System on Carbonaceous Matrices. Methods in Enzymology, 2018, 609, 221-245.	1.0	3
25	Canine Adiposeâ€Derived Stem Cells: Purinergic Characterization and Neurogenic Potential for Therapeutic Applications. Journal of Cellular Biochemistry, 2017, 118, 58-65.	2.6	9
26	Air pollution, UV irradiation and skin carcinogenesis: what we know, where we stand and what is likely to happen in the future?. Postepy Dermatologii I Alergologii, 2017, 1, 6-14.	0.9	18
27	Controlling enzymatic activity by immobilization on graphene oxide. Die Naturwissenschaften, 2017, 104, 36.	1.6	37
28	Comment on â€~â€~Elucidating the binding efficacy of β-galactosidase on graphene by docking approach and its potential application in galacto-oligosaccharide production― Bioprocess and Biosystems Engineering, 2017, 40, 797-798.	3.4	0
29	Gene Expression and Activity Profiling Reveal a Significant Contribution of Exoâ€Phosphotransferases to the Extracellular Nucleotides Metabolism in HUVEC Endothelial Cells. Journal of Cellular Biochemistry, 2017, 118, 1341-1348.	2.6	3
30	Neurogenic Differentiation of Mesenchymal Stem Cells Induces Alterations in Extracellular Nucleotides Metabolism. Journal of Cellular Biochemistry, 2017, 118, 478-486.	2.6	12
31	The roles of purinergic signaling in psychiatric disorders Acta Biochimica Polonica, 2016, 63, 1-9.	0.5	13
32	Is Ecto-nucleoside Triphosphate Diphosphohydrolase (NTPDase)-based Therapy of Central Nervous System Disorders Possible?. Mini-Reviews in Medicinal Chemistry, 2015, 15, 5-20.	2.4	16
33	Conscious Changes of Carbon Nanotubes Cytotoxicity by Manipulation with Selected Nanofactors. Applied Biochemistry and Biotechnology, 2015, 176, 730-741.	2.9	12
34	Afm Monitoring of Elasticity Changes Accompanying Differentiation Towards Neural Cells. Biophysical Journal, 2015, 108, 169a.	0.5	0
35	Chondrogenic Differentiation of Human Mesenchymal Stem Cells Results in Substantial Changes of Ectoâ€Nucleotides Metabolism. Journal of Cellular Biochemistry, 2015, 116, 2915-2923.	2.6	11
36	The role of purinergic signaling in the etiology of migraine and novel antimigraine treatment. Purinergic Signalling, 2015, 11, 307-316.	2.2	28

Katarzyna Roszek

#	Article	IF	CITATIONS
37	Nanovehicles as a novel target strategy for hyperthermic intraperitoneal chemotherapy: a multidisciplinary study of peritoneal carcinomatosis. Oncotarget, 2015, 6, 22776-22798.	1.8	18
38	Biologically Active Constituents from Salix viminalis Bio-Oil and Their Protective Activity Against Hydrogen Peroxide-Induced Oxidative Stress in Chinese Hamster Ovary Cells. Applied Biochemistry and Biotechnology, 2014, 174, 2153-2161.	2.9	7
39	Purinergic signaling in the pancreas and the therapeutic potential of ecto-nucleotidases in diabetes. Acta Biochimica Polonica, 2014, 61, 655-62.	0.5	5
40	Nucleotides metabolizing ectoenzymes as possible markers of mesenchymal stem cell osteogenic differentiation. Biochemistry and Cell Biology, 2013, 91, 176-181.	2.0	10
41	Carbon materials as new nanovehicles in hot-melt drug deposition. Journal of Physics Condensed Matter, 2013, 25, 355002.	1.8	9
42	Dramatic differences in activity of purines metabolizing ecto-enzymes between mesenchymal stem cells isolated from human umbilical cord blood and umbilical cord tissue. Biochemistry and Cell Biology, 2013, 91, 519-525.	2.0	8
43	Some aspects of purinergic signaling in the ventricular system of porcine brain. Acta Veterinaria Scandinavica, 2011, 53, 54.	1.6	3
44	The increase of adenylate kinase activity in the blood can control aggregation of platelets in coronary or peripheral arterial ischemia. Health, 2010, 02, 246-252.	0.3	3
45	Cholesterol sulphate sulphohydrolase of human placenta lysosomal membrane. Journal of Steroid Biochemistry and Molecular Biology, 2008, 110, 48-55.	2.5	1