Katarzyna Roszek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3762325/publications.pdf

Version: 2024-02-01

687363 713466 45 557 13 21 citations h-index g-index papers 47 47 47 835 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	MOF materials as therapeutic agents, drug carriers, imaging agents and biosensors in cancer biomedicine: Recent advances and perspectives. Progress in Materials Science, 2021, 117, 100743.	32.8	120
2	Controlling enzymatic activity by immobilization on graphene oxide. Die Naturwissenschaften, 2017, 104, 36.	1.6	37
3	The role of purinergic signaling in the etiology of migraine and novel antimigraine treatment. Purinergic Signalling, 2015, 11, 307-316.	2.2	28
4	Air pollution, UV irradiation and skin carcinogenesis: what we know, where we stand and what is likely to happen in the future?. Postepy Dermatologii I Alergologii, 2017, 1, 6-14.	0.9	18
5	Cytotoxic or Not? Disclosing the Toxic Nature of Carbonaceous Nanomaterials through Nano–Bio Interactions. Materials, 2020, 13, 2060.	2.9	18
6	Nanovehicles as a novel target strategy for hyperthermic intraperitoneal chemotherapy: a multidisciplinary study of peritoneal carcinomatosis. Oncotarget, 2015, 6, 22776-22798.	1.8	18
7	How to influence the mesenchymal stem cells fate? Emerging role of ectoenzymes metabolizing nucleotides. Journal of Cellular Physiology, 2019, 234, 320-334.	4.1	17
8	Is Ecto-nucleoside Triphosphate Diphosphohydrolase (NTPDase)-based Therapy of Central Nervous System Disorders Possible?. Mini-Reviews in Medicinal Chemistry, 2015, 15, 5-20.	2.4	16
9	Graphene Oxide-Mediated Protection from Photodamage. Journal of Physical Chemistry Letters, 2018, 9, 3241-3244.	4.6	16
10	Novel biocatalytic systems for maintaining the nucleotide balance based on adenylate kinase immobilized on carbon nanostructures. Materials Science and Engineering C, 2018, 88, 130-139.	7.3	15
11	In Vitro Studies on Nanoporous, Nanotubular and Nanosponge-Like Titania Coatings, with the Use of Adipose-Derived Stem Cells. Materials, 2020, 13, 1574.	2.9	14
12	New Insight into the Fluorescence Quenching of Nitrogen-Containing Carbonaceous Quantum Dots—From Surface Chemistry to Biomedical Applications. Materials, 2021, 14, 2454.	2.9	13
13	The roles of purinergic signaling in psychiatric disorders Acta Biochimica Polonica, 2016, 63, 1-9.	0.5	13
14	Conscious Changes of Carbon Nanotubes Cytotoxicity by Manipulation with Selected Nanofactors. Applied Biochemistry and Biotechnology, 2015, 176, 730-741.	2.9	12
15	Neurogenic Differentiation of Mesenchymal Stem Cells Induces Alterations in Extracellular Nucleotides Metabolism. Journal of Cellular Biochemistry, 2017, 118, 478-486.	2.6	12
16	Titania Nanofiber Scaffolds with Enhanced Biointegration Activityâ€"Preliminary In Vitro Studies. International Journal of Molecular Sciences, 2019, 20, 5642.	4.1	12
17	Chondrogenic Differentiation of Human Mesenchymal Stem Cells Results in Substantial Changes of Ectoâ€Nucleotides Metabolism. Journal of Cellular Biochemistry, 2015, 116, 2915-2923.	2.6	11
18	Nucleotides metabolizing ectoenzymes as possible markers of mesenchymal stem cell osteogenic differentiation. Biochemistry and Cell Biology, 2013, 91, 176-181.	2.0	10

#	Article	IF	CITATIONS
19	Assessment of Titanate Nanolayers in Terms of Their Physicochemical and Biological Properties. Materials, 2021, 14, 806.	2.9	10
20	The adenosinergic pathway in mesenchymal stem cell fate and functions. Medicinal Research Reviews, 2021, 41, 2316-2349.	10.5	10
21	Carbon materials as new nanovehicles in hot-melt drug deposition. Journal of Physics Condensed Matter, 2013, 25, 355002.	1.8	9
22	Canine Adiposeâ€Derived Stem Cells: Purinergic Characterization and Neurogenic Potential for Therapeutic Applications. Journal of Cellular Biochemistry, 2017, 118, 58-65.	2.6	9
23	Dramatic differences in activity of purines metabolizing ecto-enzymes between mesenchymal stem cells isolated from human umbilical cord blood and umbilical cord tissue. Biochemistry and Cell Biology, 2013, 91, 519-525.	2.0	8
24	Biologically Active Constituents from Salix viminalis Bio-Oil and Their Protective Activity Against Hydrogen Peroxide-Induced Oxidative Stress in Chinese Hamster Ovary Cells. Applied Biochemistry and Biotechnology, 2014, 174, 2153-2161.	2.9	7
25	Protein Corona Hinders N-CQDs Oxidative Potential and Favors Their Application as Nanobiocatalytic System. International Journal of Molecular Sciences, 2021, 22, 8136.	4.1	7
26	Cystine-based MBioF for Maintaining the Antioxidant–Oxidant Balance in Airway Diseases. ACS Medicinal Chemistry Letters, 2018, 9, 1280-1284.	2.8	6
27	Porphyrin Based 2D-MOF Structures as Dual-Kinetic Sorafenib Nanocarriers for Hepatoma Treatment. International Journal of Molecular Sciences, 2021, 22, 11161.	4.1	6
28	Solvothermally-derived nanoglass as a highly bioactive material. Nanoscale, 2022, 14, 5514-5528.	5.6	6
29	A New Approach to Obtaining Nano-Sized Graphene Oxide for Biomedical Applications. Materials, 2021, 14, 1327.	2.9	5
30	Determination of Graphene Oxide Adsorption Space by Lysozyme Uptake─Mechanistic Studies. Journal of Physical Chemistry B, 2022, 126, 928-933.	2.6	5
31	Purinergic signaling in the pancreas and the therapeutic potential of ecto-nucleotidases in diabetes. Acta Biochimica Polonica, 2014, 61, 655-62.	0.5	5
32	Phenolipids as new food additives: from synthesis to cell-based biological activities. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2022, 39, 1365-1379.	2.3	5
33	Underestimated Properties of Nanosized Amorphous Titanium Dioxide. International Journal of Molecular Sciences, 2022, 23, 2460.	4.1	4
34	The Oxime Ethers with Heterocyclic, Alicyclic and Aromatic Moiety as Potential Anti-Cancer Agents. Molecules, 2022, 27, 1374.	3.8	4
35	Some aspects of purinergic signaling in the ventricular system of porcine brain. Acta Veterinaria Scandinavica, 2011, 53, 54.	1.6	3
36	Gene Expression and Activity Profiling Reveal a Significant Contribution of Exoâ€Phosphotransferases to the Extracellular Nucleotides Metabolism in HUVEC Endothelial Cells. Journal of Cellular Biochemistry, 2017, 118, 1341-1348.	2.6	3

3

#	Article	IF	CITATIONS
37	Chemical and Biochemical Approach to Make a Perfect Biocatalytic System on Carbonaceous Matrices. Methods in Enzymology, 2018, 609, 221-245.	1.0	3
38	New strategy of controlled, stepwise release from novel MBioF and its potential application for drug delivery systems. Adsorption, 2019, 25, 383-391.	3.0	3
39	Carbonaceous Nanomaterials-Mediated Defense Against Oxidative Stress. Mini-Reviews in Medicinal Chemistry, 2020, 20, 294-307.	2.4	3
40	The increase of adenylate kinase activity in the blood can control aggregation of platelets in coronary or peripheral arterial ischemia. Health, 2010, 02, 246-252.	0.3	3
41	Fluorescent Chitosan Modified with Heterocyclic Aromatic Dyes. Materials, 2021, 14, 6429.	2.9	3
42	Cholesterol sulphate sulphohydrolase of human placenta lysosomal membrane. Journal of Steroid Biochemistry and Molecular Biology, 2008, 110, 48-55.	2.5	1
43	Effect of ZnO on sol–gel glass properties toward (bio)application. Polyhedron, 2022, 223, 115952.	2.2	1
44	Afm Monitoring of Elasticity Changes Accompanying Differentiation Towards Neural Cells. Biophysical Journal, 2015, 108, 169a.	0.5	0
45	Comment on â€~â€~Elucidating the binding efficacy of β-galactosidase on graphene by docking approach and its potential application in galacto-oligosaccharide production― Bioprocess and Biosystems Engineering, 2017, 40, 797-798.	3.4	0