Joachim Lingner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3761838/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Role for Human DNA Polymerase λ in Alternative Lengthening of Telomeres. International Journal of Molecular Sciences, 2021, 22, 2365.	1.8	3
2	Challenging endings: How telomeres prevent fragility. BioEssays, 2021, 43, 2100157.	1.2	11
3	The makings of TERRA R-loops at chromosome ends. Cell Cycle, 2021, 20, 1745-1759.	1.3	36
4	The human telomeric proteome during telomere replication. Nucleic Acids Research, 2021, 49, 12119-12135.	6.5	15
5	RAD51-dependent recruitment of TERRA IncRNA to telomeres through R-loops. Nature, 2020, 587, 303-308.	13.7	140
6	PRDX1 Counteracts Catastrophic Telomeric Cleavage Events That Are Triggered by DNA Repair Activities Post Oxidative Damage. Cell Reports, 2020, 33, 108347.	2.9	15
7	<scp>SMCHD</scp> 1 promotes <scp>ATM</scp> â€dependent <scp>DNA</scp> damage signaling and repair of uncapped telomeres. EMBO Journal, 2020, 39, e102668.	3.5	14
8	Human shelterin protein <scp>POT</scp> 1 prevents severe telomere instability induced by homologyâ€directed <scp>DNA</scp> repair. EMBO Journal, 2020, 39, e104500.	3.5	30
9	Expression and differential regulation of human TERRA at several chromosome ends. Rna, 2019, 25, 1470-1480.	1.6	58
10	CSL controls telomere maintenance and genome stability in human dermal fibroblasts. Nature Communications, 2019, 10, 3884.	5.8	16
11	When Telomerase Causes Telomere Loss. Developmental Cell, 2018, 44, 281-283.	3.1	6
12	Impact of oxidative stress on telomere biology. Differentiation, 2018, 99, 21-27.	1.0	95
13	PRDX1 and MTH1 cooperate to prevent ROS-mediated inhibition of telomerase. Genes and Development, 2018, 32, 658-669.	2.7	53
14	Transformation-induced stress at telomeres is counteracted through changes in the telomeric proteome including SAMHD1. Life Science Alliance, 2018, 1, e201800121.	1.3	18
15	TZAP or not to zap telomeres. Science, 2017, 355, 578-579.	6.0	7
16	The telomeric DNA damage response occurs in the absence of chromatin decompaction. Genes and Development, 2017, 31, 567-577.	2.7	58
17	Quantitative telomeric chromatin isolation protocol for human cells. Methods, 2017, 114, 28-38.	1.9	8
18	A practical qPCR approach to detect TERRA, the elusive telomeric repeat-containing RNA. Methods, 2017, 114, 39-45.	1.9	62

#	Article	IF	CITATIONS
19	Peroxiredoxin 1 Protects Telomeres from Oxidative Damage and Preserves Telomeric DNA for Extension by Telomerase. Cell Reports, 2016, 17, 3107-3114.	2.9	85
20	ALT Telomeres Get Together with Nuclear Receptors. Cell, 2015, 160, 811-813.	13.5	2
21	Telomere functions grounding on TERRA firma. Trends in Cell Biology, 2015, 25, 29-36.	3.6	190
22	The Shelterin Component TPP1 Is a Binding Partner and Substrate for the Deubiquitinating Enzyme USP7. Journal of Biological Chemistry, 2014, 289, 28595-28606.	1.6	23
23	TERRA-Reinforced Association of LSD1 with MRE11 Promotes Processing of Uncapped Telomeres. Cell Reports, 2014, 6, 765-776.	2.9	109
24	Functional characterization of the TERRA transcriptome at damaged telomeres. Nature Communications, 2014, 5, 5379.	5.8	212
25	The THO complex component Thp2 counteracts telomeric R-loops and telomere shortening. EMBO Journal, 2013, 32, 2861-2871.	3.5	125
26	Replication of Telomeres and the Regulation of Telomerase. Cold Spring Harbor Perspectives in Biology, 2013, 5, a010405-a010405.	2.3	102
27	Telomerase Inhibitors from Cyanobacteria: Isolation and Synthesis of Sulfoquinovosyl Diacylglycerols from <i>Microcystis aeruguinosa</i> PCC 7806. Chemistry - A European Journal, 2013, 19, 4596-4601.	1.7	15
28	Structure of active dimeric human telomerase. Nature Structural and Molecular Biology, 2013, 20, 454-460.	3.6	115
29	A quantitative telomeric chromatin isolation protocol identifies different telomeric states. Nature Communications, 2013, 4, 2848.	5.8	95
30	A three-state model for the regulation of telomerase by TERRA and hnRNPA1. Nucleic Acids Research, 2013, 41, 9117-9128.	6.5	80
31	Telomere Length Homeostasis Responds to Changes in Intracellular dNTP Pools. Genetics, 2013, 193, 1095-1105.	1.2	44
32	CST for the grand finale of telomere replication. Nucleus, 2013, 4, 277-282.	0.6	58
33	Molecular basis of telomere syndrome caused by <i>CTC1</i> mutations. Genes and Development, 2013, 27, 2099-2108.	2.7	101
34	TERRA Promotes Telomere Shortening through Exonuclease 1–Mediated Resection of Chromosome Ends. PLoS Genetics, 2012, 8, e1002747.	1.5	132
35	AUF1/HnRNP D RNA Binding Protein Functions in Telomere Maintenance. Molecular Cell, 2012, 47, 1-2.	4.5	28
36	Specific binding of telomeric G-quadruplexes by hydrosoluble perylene derivatives inhibits repeat addition processivity of human telomerase. Biochimie, 2012, 94, 854-863.	1.3	19

#	Article	IF	CITATIONS
37	The human CST complex is a terminator of telomerase activity. Nature, 2012, 488, 540-544.	13.7	287
38	Subtelomeric repetitive elements determine TERRA regulation by Rap1/Rif and Rap1/Sir complexes in yeast. EMBO Reports, 2011, 12, 587-593.	2.0	89
39	The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in buddingÂyeast. Nature Cell Biology, 2011, 13, 867-874.	4.6	88
40	TERRA biogenesis, turnover and implications for function. FEBS Letters, 2010, 584, 3812-3818.	1.3	125
41	TIN2-Tethered TPP1 Recruits Human Telomerase to Telomeres <i>In Vivo</i> . Molecular and Cellular Biology, 2010, 30, 2971-2982.	1.1	206
42	Molecular Dissection of Telomeric Repeat-Containing RNA Biogenesis Unveils the Presence of Distinct and Multiple Regulatory Pathways. Molecular and Cellular Biology, 2010, 30, 4808-4817.	1.1	198
43	The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Research, 2010, 38, 5797-5806.	6.5	318
44	Telomerase Is Essential to Alleviate Pif1-Induced Replication Stress at Telomeres. Genetics, 2009, 183, 779-791.	1.2	28
45	TERRA: telomeric repeat-containing RNA. EMBO Journal, 2009, 28, 2503-2510.	3.5	245
46	Related Mechanisms for End Processing at Telomeres and DNA Double-Strand Breaks. Molecular Cell, 2009, 35, 137-138.	4.5	3
47	The Rat1p 5′ to 3′ Exonuclease Degrades Telomeric Repeat-Containing RNA and Promotes Telomere Elongation in Saccharomyces cerevisiae. Molecular Cell, 2008, 32, 465-477.	4.5	274
48	Tel2 Finally Tells One Story. Science, 2008, 320, 60-61.	6.0	8
49	Telomeres: The silence is broken. Cell Cycle, 2008, 7, 1161-1165.	1.3	101
50	An Affinity Oligonucleotide Displacement Strategy to Purify Ribonucleoprotein Complexes Applied to Human Telomerase. Methods in Molecular Biology, 2008, 488, 9-22.	0.4	8
51	Protein–RNA and protein–protein interactions mediate association of human EST1A/SMG6 with telomerase. Nucleic Acids Research, 2007, 35, 7011-7022.	6.5	52
52	Saccharomyces cerevisiae Ebs1p is a putative ortholog of human Smg7 and promotes nonsense-mediated mRNA decay. Nucleic Acids Research, 2007, 35, 7688-7697.	6.5	63
53	Telomeric Repeat–Containing RNA and RNA Surveillance Factors at Mammalian Chromosome Ends. Science, 2007, 318, 798-801.	6.0	1,140
54	Human Telomerase RNA Accumulation in Cajal Bodies Facilitates Telomerase Recruitment to Telomeres and Telomere Elongation. Molecular Cell, 2007, 27, 882-889.	4.5	161

#	Article	IF	CITATIONS
55	Tel1 kinase and subtelomereâ€bound Tbf1 mediate preferential elongation of short telomeres by telomerase in yeast. EMBO Reports, 2007, 8, 1080-1085.	2.0	86
56	Telomerase repeat addition processivity is increased at critically short telomeres in a Tel1-dependent manner in <i>Saccharomyces cerevisiae</i> . Genes and Development, 2007, 21, 2485-2494.	2.7	134
57	Telomerase Unplugged. ACS Chemical Biology, 2007, 2, 155-158.	1.6	16
58	Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17347-17352.	3.3	265
59	Damage control. Nature, 2007, 448, 1001-1002.	13.7	6
60	Low- to high-throughput analysis of telomerase modulators with Telospot. Nature Methods, 2007, 4, 851-853.	9.0	32
61	The finger subdomain of yeast telomerase cooperates with Pif1p to limit telomere elongation. Nature Structural and Molecular Biology, 2006, 13, 734-739.	3.6	43
62	Telomere length homeostasis requires that telomerase levels are limiting. EMBO Journal, 2006, 25, 565-574.	3.5	282
63	Telomere length homeostasis. Chromosoma, 2006, 115, 413-425.	1.0	265
64	The Human RNA Surveillance Factor UPF1 Is Required for S Phase Progression and Genome Stability. Current Biology, 2006, 16, 433-439.	1.8	181
65	The Double Life of UPF1 in RNA and DNA Stability Pathways. Cell Cycle, 2006, 5, 1496-1498.	1.3	49
66	Telomerase limits the extent of base pairing between template RNA and telomeric DNA. EMBO Reports, 2005, 6, 361-366.	2.0	61
67	Human Protection of Telomeres 1 (POT1) Is a Negative Regulator of Telomerase Activity In Vitro. Molecular and Cellular Biology, 2005, 25, 808-818.	1.1	175
68	CELL BIOLOGY: Telomere Wedding Ends in Divorce. Science, 2004, 304, 60-62.	6.0	8
69	Telomere Length Homeostasis Is Achieved via a Switch between Telomerase- Extendible and -Nonextendible States. Cell, 2004, 117, 323-335.	13.5	456
70	A Human Homolog of Yeast Est1 Associates with Telomerase and Uncaps Chromosome Ends When Overexpressed. Current Biology, 2003, 13, 568-574.	1.8	180
71	Fingering the Ends. Cell, 2003, 113, 552-554.	13.5	10
72	Yeast telomerase is specialized for C/A-rich RNA templates. Nucleic Acids Research, 2003, 31, 1646-1655.	6.5	20

#	Article	IF	CITATIONS
73	Mechanism of Human Telomerase Inhibition by BIBR1532, a Synthetic, Non-nucleosidic Drug Candidate. Journal of Biological Chemistry, 2002, 277, 15566-15572.	1.6	252
74	Telomerase: biochemical considerations for enzyme and substrate. Trends in Biochemical Sciences, 2002, 27, 572-579.	3.7	131
75	Regulation of the human telomerase reverse transcriptase gene. Oncogene, 2002, 21, 541-552.	2.6	177
76	Intracellular trafficking of yeast telomerase components. EMBO Reports, 2002, 3, 652-659.	2.0	66
77	Rearrangements of minisatellites in the human telomerase reverse transcriptase gene are not correlated with its expression in colon carcinomas. Oncogene, 2001, 20, 2600-2605.	2.6	16
78	Molecular Basis for Telomere Repeat Divergence in Budding Yeast. Molecular and Cellular Biology, 2001, 21, 7277-7286.	1.1	67
79	Direct activation of TERT transcription by c-MYC. Nature Genetics, 1999, 21, 220-224.	9.4	808
80	Telomerase and chromosome end maintenance. Current Opinion in Genetics and Development, 1998, 8, 226-232.	1.5	113
81	Telomerase Catalytic Subunit Homologs from Fission Yeast and Human. Science, 1997, 277, 955-959.	6.0	2,138
82	Telomerase and the Chromosome end Replication Problem. Novartis Foundation Symposium, 1997, 211, 20-40.	1.2	10
83	The FIP1 gene encodes a component of a yeast pre-mRNA polyadenylation factor that directly interacts with poly(A) polymerase. Cell, 1995, 81, 379-389.	13.5	137
84	3′-end labeling of RNA with recombinant yeast poly(A) polymerase. Nucleic Acids Research, 1993, 21, 2917-2920.	6.5	70
85	Cloning and expression of the essential gene for poly(A) polymerase from S. cerevisiae. Nature, 1991, 354, 496-498.	13.7	131
86	Basis for changes in DNA recognition by the Type I DNA restriction and modification enzymes. Journal of Molecular Biology, 1989, 205, 115-125.	2.0	120