Joan SimÃ³

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3761731/publications.pdf Version: 2024-02-01

ΙΟΛΝ SIMÃ3

#	Article	IF	CITATIONS
1	Toward an Evolved Concept of Landrace. Frontiers in Plant Science, 2017, 08, 145.	1.7	132
2	Characterization of common beans (Phaseolus vulgaris L.) by infrared spectroscopy: Comparison of MIR, FT-NIR and dispersive NIR using portable and benchtop instruments. Food Research International, 2013, 54, 1643-1651.	2.9	48
3	Effect of steaming and sous vide processing on the total phenolic content, vitamin C and antioxidant potential of the genus Brassica. Innovative Food Science and Emerging Technologies, 2018, 47, 412-420.	2.7	47
4	Bioaccessibility and antioxidant activity of phenolic compounds in cooked pulses. International Journal of Food Science and Technology, 2019, 54, 1816-1823.	1.3	47
5	Plant Genebanks: Present Situation and Proposals for Their Improvement. the Case of the Spanish Network. Frontiers in Plant Science, 2018, 9, 1794.	1.7	45
6	Near-Infrared Spectroscopy Analysis of Seed Coats of Common Beans (Phaseolus vulgaris L.): A Potential Tool for Breeding and Quality Evaluation. Journal of Agricultural and Food Chemistry, 2012, 60, 706-712.	2.4	35
7	Steaming and sous-vide: Effects on antioxidant activity, vitamin C, and total phenolic content of Brassica vegetables. International Journal of Gastronomy and Food Science, 2018, 13, 134-139.	1.3	32
8	Cherry and Fresh Market Tomatoes: Differences in Chemical, Morphological, and Sensory Traits and Their Implications for Consumer Acceptance. Agronomy, 2019, 9, 9.	1.3	31
9	Estimating sensory properties of common beans (Phaseolus vulgaris L.) by near infrared spectroscopy. Food Research International, 2014, 56, 55-62.	2.9	29
10	Quality and bioaccessibility of total phenols and antioxidant activity of calçots (Allium cepa L.) stored under controlled atmosphere conditions. Postharvest Biology and Technology, 2017, 129, 118-128.	2.9	22
11	A STANDARDIZED METHOD OF PREPARING COMMON BEANS (<i>PHASEOLUS VULGARIS</i> L.) FOR SENSORY ANALYSIS. Journal of Sensory Studies, 2012, 27, 188-195.	0.8	17
12	A Comparison of Landraces vs. Modern Varieties of Lettuce in Organic Farming During the Winter in the Mediterranean Area: An Approach Considering the Viewpoints of Breeders, Consumers, and Farmers. Frontiers in Plant Science, 2018, 9, 1491.	1.7	17
13	Impact of grafting on sensory profile of tomato landraces in conventional and organic management systems. Horticulture Environment and Biotechnology, 2018, 59, 597-606.	0.7	17
14	Development of a methodology to analyze leaves from Prunus dulcis varieties using near infrared spectroscopy. Talanta, 2019, 204, 320-328.	2.9	16
15	Determination of chemical properties in â€ [~] calçot' (Allium cepa L.) by near infrared spectroscopy and multivariate calibration. Food Chemistry, 2018, 262, 178-183.	4.2	15
16	The Spanish Core Collection of Common Beans (Phaseolus vulgaris L.): An Important Source of Variability for Breeding Chemical Composition. Frontiers in Plant Science, 2018, 9, 1642.	1.7	15
17	Is It Still Necessary to Continue to Collect Crop Genetic Resources in the Mediterranean Area? A Case Study in Catalonia. Economic Botany, 2017, 71, 330-341.	0.8	14
18	Multivariate Classification of Prunus dulcis Varieties using Leaves of Nursery Plants and Near-Infrared Spectroscopy. Scientific Reports, 2019, 9, 19810.	1.6	12

#	Article	IF	CITATIONS
19	Efficacy of chlorine, peroxyacetic acid and mild-heat treatment on the reduction of natural microflora and maintenance of quality of fresh-cut calçots (Allium cepa L.). LWT - Food Science and Technology, 2018, 95, 339-345.	2.5	11
20	â€~Roquerola' and â€~Montferri', First Improved Onion (Allium cepa L.) Cultivars for "Calçots―Prod Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 801-802.	uction.	11
21	Sensory changes related to breeding for plant architecture and resistance to viruses and anthracnose in bean market class Fabada (Phaseolus vulgaris L.). Euphytica, 2012, 186, 687-696.	0.6	10
22	Breeding onions (Allium cepa L.) for consumption as â€~calçots' (second-year resprouts). Scientia Horticulturae, 2013, 152, 74-79.	1.7	9
23	Culinary and sensory traits diversity in the Spanish Core Collection of common beans (Phaseolus) Tj ETQq1 1 0.7	84314 rgE 0.3	3T /Overlock
24	Using Trendsetting Chefs to Design New Culinary Preparations with the "Penjar―Tomato. Journal of Culinary Science and Technology, 2014, 12, 196-214.	0.6	5
25	Improving the Commercial Value of the â€~Calçot' (Allium cepa L.) Landrace: Influence of Genetic and Environmental Factors in Chemical Composition and Sensory Attributes. Frontiers in Plant Science, 2018, 9, 1465.	1.7	5
26	Estimating Sensory Properties with Near-Infrared Spectroscopy: A Tool for Quality Control and Breeding of â€~Calçots' (Allium cepa L). Agronomy, 2020, 10, 828.	1.3	5
27	Variability in sensory attributes in common bean (Phaseolus vulgaris L.): a first survey in the Iberian secondary diversity center. Genetic Resources and Crop Evolution, 2013, 60, 1885-1898.	0.8	4
28	Participatory Plant Breeding and the Evolution of Landraces: A Case Study in the Organic Farms of the Collserola Natural Park. Agronomy, 2019, 9, 486.	1.3	4
29	Effects of long-term controlled atmosphere storage, minimal processing, and packaging on quality attributes of <i>cal§ots</i> (<i>Allium cepa</i> L.). Food Science and Technology International, 2020, 26, 403-412.	1.1	4
30	Nutritional values of raw and cooked â€~calçots' (<i>Allium cepa</i> L. resprouts), an expanding crop. Journal of the Science of Food and Agriculture, 2019, 99, 4985-4992.	1.7	3
31	Effect of pre-harvest conditions and postharvest storage time on the quality of whole and fresh-cut calçots (Allium cepa L.). Scientia Horticulturae, 2019, 249, 110-119.	1.7	3
32	Tools for breeding â€~calçots' (Allium cepa L.), an expanding crop. African Journal of Biotechnology, 2012, 11, .	0.3	3
33	Improving the Conservation and Use of Traditional Germplasm through Breeding for Local Adaptation: The Case of the Castellfollit del Boix Common Bean (Phaseolus vulgaris L.) Landrace. Agronomy, 2019, 9, 889.	1.3	1
34	Varietal quality control in the nursery plant industry using computer vision and deep learning techniques. Journal of Chemometrics, 2022, 36, e3320.	0.7	1
35	Combining computer vision and deep learning to classify varieties of <scp><i>Prunus dulcis</i></scp> for the nursery plant industry. Journal of Chemometrics, 2022, 36, e3388.	0.7	0