
Wenjin Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3761267/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functionalization of Electrodes with Tunable [EMIM] _{<i>x</i>} <i>x</i> +1 [–] lonic Liquid Clusters for Electrochemical Separations. Chemistry of Materials, 2022, 34, 2612-2623.	6.7	5
2	Guanosine Dianions Hydrated by One to Four Water Molecules. Journal of Physical Chemistry Letters, 2022, , 3230-3236.	4.6	4
3	Gaseous cyclodextrin- <i>closo</i> -dodecaborate complexes l‡CD·B ₁₂ X ₁₂ ^{2â°'} (l‡ = l±, l², and l³; X = F, Cl, Br, and l): electronic structu and intramolecular interactions. Physical Chemistry Chemical Physics, 2021, 23, 13447-13457.	1r e s8	8
4	Cryogenic Vibrationally Resolved Photoelectron Spectroscopy of OH [–] (H ₂ O): Confirmation of Multidimensional Franck–Condon Simulation Results for the Transition State of the OH + H ₂ O Reaction. Journal of Physical Chemistry A, 2021, 125, 2154-2162.	2.5	3
5	Observation of Conformational Simplification upon <i>N</i> -Methylation on Amino Acid Iodide Clusters. Journal of Physical Chemistry Letters, 2021, 12, 2780-2787.	4.6	4
6	Threshold Ionization Spectroscopy and Theoretical Calculations of LnO (Ln = La and Ce). Journal of Physical Chemistry A, 2021, 125, 1941-1948.	2.5	9
7	Photoelectron Spectroscopy and Theoretical Study on Monosolvated Cyanate Analogue Clusters ECX [–] ·Sol (ECX [–] = NCSe [–] , AsCSe [–] , and) Tj ETQq1 I 125, 3928-3935.	l 0.78431 2.5	.4 _g gBT /Ove
8	Photoelectron Spectroscopy and Theoretical Investigations of Gaseous Doubly Deprotonated 2′-Deoxynucleoside 5′-Monophosphate Dianions. Journal of Physical Chemistry Letters, 2021, 12, 9463-9469.	4.6	5
9	Electron Affinity and Electronic Structure of Hexafluoroacetone (HFA) Revealed by Photodetaching the [HFA] ^{•–} Radical Anion. Journal of Physical Chemistry A, 2021, 125, 746-753.	2.5	4
10	Observation and Exploitation of Spin–Orbit Excited Dipole-Bound States in Ion–Molecule Clusters. Journal of Physical Chemistry Letters, 2021, 12, 11022-11028.	4.6	4
11	Isolated [B ₂ (CN) ₆] ^{2–} : Small Yet Exceptionally Stable Nonmetal Dianion. Journal of Physical Chemistry Letters, 2021, 12, 12005-12011.	4.6	2
12	Cryogenic "lodide-Tagging―Photoelectron Spectroscopy: A Sensitive Probe for Specific Binding Sites of Amino Acids. Journal of Physical Chemistry Letters, 2020, 11, 4346-4352.	4.6	15
13	Spectroscopic evidence for intact carbonic acid stabilized by halide anions in the gas phase. Physical Chemistry Chemical Physics, 2020, 22, 19459-19467.	2.8	10
14	Probing Orientation-Specific Charge–Dipole Interactions between Hexafluoroisopropanol and Halides: A Joint Photoelectron Spectroscopy and Theoretical Study. Journal of Physical Chemistry A, 2020, 124, 2036-2045.	2.5	17
15	Cryogenic and temperature-dependent photoelectron spectroscopy of metal complexes. International Reviews in Physical Chemistry, 2020, 39, 83-108.	2.3	24
16	Velocity-Map Imaging and Magnetic-Bottle Photoelectron Spectroscopy of [SeCCH] ^{â^'} : Electronic Properties and Spin–Orbit Splitting. Journal of Physical Chemistry A, 2020, 124, 3214-3219.	2.5	2
17	Spin-orbit coupling and vibronic transitions of two Ce(C4H6) isomers probed by mass-analyzed threshold ionization and relativistic quantum computation. Journal of Chemical Physics, 2019, 151, 124307.	3.0	6
18	La-mediated dehydrogenation and C C bond cleavage of 1,4-pentadiene and 1-pentyne: Spectroscopy and formation of La(C5H6) and La(C3H4) radicals. Journal of Organometallic Chemistry, 2019, 880, 187-195.	1.8	5

Wenjin Cao

#	Article	IF	CITATIONS
19	Lanthanum-mediated dehydrogenation of butenes: Spectroscopy and formation of La(C4H6) isomers. Journal of Chemical Physics, 2018, 148, 044312.	3.0	7
20	Spectroscopy and formation of lanthanum-hydrocarbon radicals formed by C—H and C—C bond activation of 1-pentene and 2-pentene. Journal of Chemical Physics, 2018, 149, 034303.	3.0	2
21	Spectroscopy and formation of lanthanum-hydrocarbon radicals formed by association and carbon-carbon bond cleavage of isoprene. Journal of Chemical Physics, 2018, 148, 194302.	3.0	3
22	Spectroscopic Characterization of Nonconcerted [4 + 2] Cycloaddition of 1,3-Butadiene with Lanthanacyclopropene To Form Lanthanum–Benzene in the Gas Phase. Journal of Physical Chemistry A, 2017, 121, 1233-1239.	2.5	12
23	Spectroscopy and formation of lanthanum-hydrocarbon radicals formed by C—C bond cleavage and coupling of propene. Journal of Chemical Physics, 2017, 146, .	3.0	18
24	Mass-analyzed threshold ionization spectroscopy of lanthanum-hydrocarbon radicals formed by C — H bond activation of propene. Journal of Chemical Physics, 2017, 146, 074305.	3.0	16
25	Low-Energy Photoelectron Imaging Spectroscopy of La _{<i>n</i>} (benzene) (<i>n</i> = 1 and) Tj ETQq	$1 \begin{array}{c} 1 \\ 2.5 \end{array}$	314 rgBT /○
26	Lanthanum-mediated dehydrogenation of 1- and 2-butynes: Spectroscopy and formation of La(C4H4) isomers. Journal of Chemical Physics, 2017, 147, 064303.	3.0	5
27	Spectroscopic Characterization of Lanthanum-Mediated Dehydrogenation and C–C Bond Coupling of Ethylene. Journal of Physical Chemistry A, 2016, 120, 4482-4489.	2.5	22
28	La-Activated Bicyclo-oligomerization of Acetylene to Naphthalene. Journal of the American Chemical Society, 2016, 138, 2468-2471.	13.7	35