Zhi-Yuan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3761091/publications.pdf

Version: 2024-02-01

201674 197818 2,469 49 27 49 citations h-index g-index papers 49 49 49 2977 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Lower-voltage plateau Zn-substituted Co3O4 submicron spheres anode for Li-ion half and full batteries. Journal of Alloys and Compounds, 2022, 890, 161888.	5.5	7
2	Amorphous High-entropy Non-precious metal oxides with surface reconstruction toward highly efficient and durable catalyst for oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 606, 635-644.	9.4	42
3	Recent advances of metal telluride anodes for high-performance lithium/sodium–ion batteries. Materials Horizons, 2022, 9, 524-546.	12.2	32
4	High-entropy chemistry stabilizing spinel oxide (CoNiZnXMnLi)3O4 (X = Fe, Cr) for high-performance anode of Li-ion batteries. Rare Metals, 2022, 41, 1265-1275.	7.1	46
5	Nanosized high entropy spinel oxide (FeCoNiCrMn) ₃ O ₄ as a highly active and ultra-stable electrocatalyst for the oxygen evolution reaction. Sustainable Energy and Fuels, 2022, 6, 1479-1488.	4.9	31
6	In-situ synthesis of niobium-doped TiO2 nanosheet arrays on double transition metal MXene (TiNbCTx) as stable anode material for lithium-ion batteries. Journal of Colloid and Interface Science, 2022, 617, 147-155.	9.4	31
7	Recent advances of Li7La3Zr2O12-based solid-state lithium batteries towards high energy density. Energy Storage Materials, 2022, 49, 299-338.	18.0	30
8	Boosting electrochemical reaction and suppressing phase transition with a high-entropy O3-type layered oxide for sodium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 14943-14953.	10.3	29
9	Crystalline Planes templated engineering of defect chemistry in Cobalt(II, III) oxide anodes for lithium ion batteries. Journal of Alloys and Compounds, 2021, 850, 156858.	5.5	14
10	Boosting the electrocatalytic hydrogen evolution and sodium-storage properties of Co ₉ S ₈ nanoparticles <i>via</i> encapsulation with nitrogen-doped few-layer graphene networks. Sustainable Energy and Fuels, 2021, 5, 4618-4627.	4.9	9
11	Sulfur-doped 3D hierarchical porous carbon network toward excellent potassium-ion storage performance. Rare Metals, 2021, 40, 2464-2473.	7.1	41
12	Nanosized CoSb Alloy Confined in Honeycomb Carbon Framework Toward Highâ€Property Potassiumâ€lon and Sodiumâ€lon Batteries. Energy Technology, 2021, 9, 2100095.	3.8	5
13	Ultrathin Metallic-Phase Molybdenum Disulfide Nanosheets Stabilized on Functionalized Carbon Nanotubes Via Covalent Interface Interaction for Sodium- and Lithium-Ion Storage. ACS Applied Energy Materials, 2021, 4, 9440-9449.	5.1	11
14	New spinel high-entropy oxides (FeCoNiCrMnXLi)3O4 (X = Cu, Mg, Zn) as the anode material for lithium-ion batteries. Ceramics International, 2021, 47, 32025-32032.	4.8	50
15	Precise tuning of low-crystalline Sb@Sb2O3 confined in 3D porous carbon network for fast and stable potassium ion storage. Journal of Materials Science and Technology, 2021, 94, 123-129.	10.7	20
16	Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1666-1674.	4.9	8
17	Covalent Pinning of Highly Dispersed Ultrathin Metallic-Phase Molybdenum Disulfide Nanosheets on the Inner Surface of Mesoporous Carbon Spheres for Durable and Rapid Sodium Storage. ACS Applied Materials & Sodium Storage.	8.0	13
18	Constructing N-Doped porous carbon confined FeSb alloy nanocomposite with Fe-N-C coordination as a universal anode for advanced Na/K-ion batteries. Chemical Engineering Journal, 2020, 384, 123327.	12.7	60

#	Article	IF	CITATIONS
19	In Situ Construction of Multibuffer Structure 3D CoSn@SnO x /CoO x @C Anode Material for Ultralong Life Lithium Storage. Energy Technology, 2020, 8, 1900829.	3.8	11
20	In situ synthesis of Co3O4 nanoparticles confined in 3D nitrogen-doped porous carbon as an efficient bifunctional oxygen electrocatalyst. Rare Metals, 2020, 39, 1383-1394.	7.1	57
21	BiSb@Bi2O3/SbOx encapsulated in porous carbon as anode materials for sodium/potassium-ion batteries with a high pseudocapacitive contribution. Journal of Colloid and Interface Science, 2020, 580, 429-438.	9.4	47
22	NiCo alloy nanoparticles encapsulated in N-doped 3D porous carbon as efficient electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2020, 45, 22797-22807.	7.1	20
23	Chemical activation of hollow carbon nanospheres induced self-assembly of metallic 1T phase MoS2 ultrathin nanosheets for electrochemical lithium storage. Electrochimica Acta, 2020, 353, 136545.	5.2	25
24	Optimizing oxygen vacancies can improve the lithium storage properties in NiO porous nanosheet anodes. Materials Characterization, 2020, 166, 110447.	4.4	14
25	Engineering Surface Structure and Defect Chemistry of Nanoscale Cubic Co ₃ O ₄ Crystallites for Enhanced Lithium and Sodium Storage. ACS Applied Nano Materials, 2020, 3, 3892-3903.	5.0	32
26	Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. Journal of Alloys and Compounds, 2020, 844, 156158.	5.5	178
27	Porous Co3O4@CoO composite nanosheets as improved anodes for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 834, 155030.	5.5	61
28	Ultrafast and Stable Lithium Storage Enabled by the Electric Field Effect in Layer-Structured Tablet-Like NH ₄ TiOF ₃ Mesocrystals. ACS Applied Materials & amp; Interfaces, 2020, 12, 20404-20413.	8.0	10
29	Fabrication of Porous Carbon with Controllable Nitrogen Doping as Anode for Highâ€Performance Potassium″on Batteries. ChemElectroChem, 2019, 6, 3699-3707.	3.4	28
30	Ultrafine SnO2 nanoparticles encapsulated in 3D porous carbon as a high-performance anode material for potassium-ion batteries. Journal of Power Sources, 2019, 441, 227191.	7.8	47
31	High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum. Journal of Power Sources, 2019, 415, 165-171.	7.8	139
32	A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 14309-14318.	10.3	157
33	Improving the electrochemical performance of layered cathode oxide for sodium-ion batteries by optimizing the titanium content. Journal of Colloid and Interface Science, 2019, 544, 164-171.	9.4	29
34	Monodisperse multicore-shell SnSb@SnOx/SbOx@C nanoparticles space-confined in 3D porous carbon networks as high-performance anode for Li-ion and Na-ion batteries. Chemical Engineering Journal, 2019, 371, 356-365.	12.7	65
35	Nano-sized MoO2 spheres interspersed three-dimensional porous carbon composite as advanced anode for reversible sodium/potassium ion storage. Electrochimica Acta, 2019, 307, 293-301.	5.2	79
36	Chemical reduction-induced oxygen deficiency in Co3O4 nanocubes as advanced anodes for lithium ion batteries. Solid State Ionics, 2019, 334, 117-124.	2.7	25

3

#	Article	IF	CITATIONS
37	Tuning lithium storage properties of cubic Co3O4 crystallites: The effect of oxygen vacancies. Journal of Alloys and Compounds, 2019, 787, 720-727.	5.5	30
38	In situ double-template fabrication of boron-doped 3D hierarchical porous carbon network as anode materials for Li- and Na-ion batteries. Applied Surface Science, 2019, 464, 422-428.	6.1	77
39	Construction of NiCo2O4 nanorods into 3D porous ultrathin carbon networks for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2019, 783, 1-9.	5.5	14
40	A Simple and Lowâ€Cost Method to Synthesize Crâ€Doped αâ€Fe ₂ O ₃ Electrode Materials for Lithiumâ€Ion Batteries. ChemElectroChem, 2019, 6, 856-864.	3.4	30
41	Morphological evolution of hollow NiCo ₂ O ₄ microspheres and their high pseudocapacitance contribution for Li/Na-ion battery anodes. New Journal of Chemistry, 2018, 42, 17762-17768.	2.8	13
42	Novel high-capacity hybrid layered oxides NaxLi1.5-xNi0.167Co0.167Mn0.67O2 as promising cathode materials for rechargeable sodium ion batteries. Ceramics International, 2018, 44, 22512-22519.	4.8	9
43	Improved lithium storage properties of Co3O4 nanoparticles via laser irradiation treatment. Electrochimica Acta, 2018, 281, 31-38.	5.2	41
44	Novel P2-type concentration-gradient Na0.67Ni0.167Co0.167Mn0.67O2 modified by Mn-rich surface as cathode material for sodium ion batteries. Journal of Power Sources, 2018, 396, 404-411.	7.8	45
45	Template-assisted <i>in situ</i> confinement synthesis of nitrogen and oxygen co-doped 3D porous carbon network for high-performance sodium-ion battery anode. New Journal of Chemistry, 2018, 42, 14410-14416.	2.8	15
46	The critical role of sodium content on structure, morphology and electrochemical performance of layered P2-type Na x Ni 0.167 Co 0.167 Mn 0.67 O 2 for sodium ion batteries. Journal of Power Sources, 2017, 362, 323-331.	7.8	31
47	Three-dimensional porous bowl-shaped carbon cages interspersed with carbon coated Ni–Sn alloy nanoparticles as anode materials for high-performance lithium-ion batteries. New Journal of Chemistry, 2017, 41, 393-402.	2.8	26
48	Three-dimensional porous carbon nanosheet networks anchored with Cu ₆ Sn ₅ @carbon as a high-performance anode material for lithium ion batteries. RSC Advances, 2016, 6, 54718-54726.	3.6	20
49	Graphene Networks Anchored with Sn@Graphene as Lithium Ion Battery Anode. ACS Nano, 2014, 8, 1728-1738.	14.6	615