Ekaterina Rogaeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3761084/publications.pdf

Version: 2024-02-01

12303 5519 30,041 191 69 163 citations h-index g-index papers 195 195 195 28244 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron, 2011, 72, 257-268.	3.8	3,833
2	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	9.4	3,741
3	<i>TREM2</i> Variants in Alzheimer's Disease. New England Journal of Medicine, 2013, 368, 117-127.	13.9	2,385
4	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	9.4	1,962
5	Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genetics, 2011, 43, 436-441.	9.4	1,676
6	The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nature Genetics, 2007, 39, 168-177.	9.4	1,045
7	Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and \hat{l}^2 APP processing. Nature, 2000, 407, 48-54.	13.7	895
8	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	9.4	783
9	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	3.8	517
10	Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurology, The, 2015, 14, 253-262.	4.9	432
11	Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease. Nature, 2014, 505, 550-554.	13.7	425
12	Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nature Neuroscience, 2014, 17, 664-666.	7.1	398
13	Meta-analysis Confirms CR1, CLU, and PICALM as Alzheimer Disease Risk Loci and Reveals Interactions With APOE Genotypes. Archives of Neurology, 2010, 67, 1473.	4.9	376
14	A Multicenter Study of Glucocerebrosidase Mutations in Dementia With Lewy Bodies. JAMA Neurology, 2013, 70, 727.	4.5	374
15	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	4.9	302
16	Deciphering the role of heterozygous mutations in genes associated with parkinsonism. Lancet Neurology, The, 2007, 6, 652-662.	4.9	290
17	TMP21 is a presenilin complex component that modulates \hat{I}^3 -secretase but not \acute{E} -secretase activity. Nature, 2006, 440, 1208-1212.	13.7	286
18	Wild-type PINK1 Prevents Basal and Induced Neuronal Apoptosis, a Protective Effect Abrogated by Parkinson Disease-related Mutations. Journal of Biological Chemistry, 2005, 280, 34025-34032.	1.6	284

#	Article	IF	Citations
19	A novel Alzheimer disease locus located near the gene encoding tau protein. Molecular Psychiatry, 2016, 21, 108-117.	4.1	260
20	Hypermethylation of the CpG Island Near the G4C2 Repeat in ALS with a C9orf72 Expansion. American Journal of Human Genetics, 2013, 92, 981-989.	2.6	241
21	Microbleed Topography, Leukoaraiosis, and Cognition in Probable Alzheimer Disease From the Sunnybrook Dementia Study. Archives of Neurology, 2008, 65, 790-5.	4.9	239
22	Early-onset Parkinson's disease caused by a compound heterozygous DJ-1 mutation. Annals of Neurology, 2003, 54, 271-274.	2.8	233
23	Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics, 2021, 53, 294-303.	9.4	198
24	Genetic screening of Alzheimer's disease genes in Iberian and African samples yields novel mutations in presenilins and APP. Neurobiology of Aging, 2010, 31, 725-731.	1.5	196
25	Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurology, The, 2018, 17, 64-74.	4.9	195
26	Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Human Molecular Genetics, 2014, 23, 6139-6146.	1.4	178
27	Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurology, The, 2020, 19, 145-156.	4.9	175
28	Novel splicing mutation in the progranulin gene causing familial corticobasal syndrome. Brain, 2006, 129, 3115-3123.	3.7	174
29	Amyotrophic lateral sclerosis is a non-amyloid disease in which extensive misfolding of SOD1 is unique to the familial form. Acta Neuropathologica, 2010, 119, 335-344.	3.9	171
30	Coding mutations in <scp><i>SORL</i><td>2.8</td><td>168</td></scp>	2.8	168
31	Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurology, 2014, 71, 1394.	4.5	166
32	Transethnic genomeâ€wide scan identifies novel Alzheimer's disease loci. Alzheimer's and Dementia, 2017, 13, 727-738.	0.4	166
33	Analysis of the PINK1 Gene in a Large Cohort of Cases With Parkinson Disease. Archives of Neurology, 2004, 61, 1898-904.	4.9	162
34	Identification of Novel Loci for Alzheimer Disease and Replication of CLU, PICALM, and BIN1 in Caribbean Hispanic Individuals. Archives of Neurology, 2011, 68, 320-8.	4.9	160
35	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	1.1	155
36	Meta-analysis of the Association Between Variants in SORL1 and Alzheimer Disease. Archives of Neurology, 2011, 68, 99.	4.9	153

#	Article	lF	CITATIONS
37	Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study. Neurobiology of Aging, 2018, 62, 191-196.	1.5	151
38	RNA targets of TDP-43 identified by UV-CLIP are deregulated in ALS. Molecular and Cellular Neurosciences, 2011, 47, 167-180.	1.0	146
39	Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel. JAMA Neurology, 2021, 78, 102.	4.5	144
40	Evidence for an Alzheimer Disease Susceptibility Locus on Chromosome 12 and for Further Locus Heterogeneity. JAMA - Journal of the American Medical Association, 1998, 280, 614.	3.8	142
41	The Association Between Genetic Variants in SORL1 and Alzheimer Disease in an Urban, Multiethnic, Community-Based Cohort. Archives of Neurology, 2007, 64, 501.	4.9	141
42	Association Between Early-Onset Parkinson Disease and 22q11.2 Deletion Syndrome. JAMA Neurology, 2013, 70, 1359.	4.5	132
43	Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study. Lancet Neurology, The, 2019, 18, 1103-1111.	4.9	128
44	Rare coding mutations identified by sequencing of <scp>A</scp> lzheimer disease genomeâ€wide association studies loci. Annals of Neurology, 2015, 78, 487-498.	2.8	126
45	Nicastrin binds to membrane-tethered Notch. Nature Cell Biology, 2001, 3, 751-754.	4.6	124
46	Isoformâ€specific antibodies reveal distinct subcellular localizations of <scp>C</scp> 9orf72 in amyotrophic lateral sclerosis. Annals of Neurology, 2015, 78, 568-583.	2.8	123
47	Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Annals of Neurology, 2019, 85, 470-481.	2.8	118
48	The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathologica, 2015, 129, 715-727.	3.9	114
49	Mutations in the CHCHD10 gene are a common cause of familial amyotrophic lateral sclerosis. Brain, 2014, 137, e311-e311.	3.7	112
50	NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiology of Aging, 2017, 57, 247.e9-247.e13.	1.5	108
51	Collagenosis of the Deep Medullary Veins: An Underrecognized Pathologic Correlate of White Matter Hyperintensities and Periventricular Infarction?. Journal of Neuropathology and Experimental Neurology, 2017, 76, 299-312.	0.9	108
52	Analysis of the glucocerebrosidase gene in Parkinson's disease. Movement Disorders, 2005, 20, 367-370.	2.2	107
53	Clathrin adaptor CALM/PICALM is associated with neurofibrillary tangles and is cleaved in Alzheimer's brains. Acta Neuropathologica, 2013, 125, 861-878.	3.9	107
54	Autosomal Dominant Frontotemporal Lobar Degeneration Due to the C9ORF72 Hexanucleotide Repeat Expansion: Late-Onset Psychotic Clinical Presentation. Biological Psychiatry, 2013, 74, 384-391.	0.7	105

#	Article	IF	CITATIONS
55	SORCS1 alters amyloid precursor protein processing and variants may increase Alzheimer's disease risk. Annals of Neurology, 2011, 69, 47-64.	2.8	104
56	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	4.9	97
57	Drug Repositioning for Alzheimer's Disease Based on Systematic â€~omics' Data Mining. PLoS ONE, 2016, e0168812.	11.	95
58	A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants. Journal of Medical Genetics, 2012, 49, 721-726.	1.5	94
59	Benign hereditary chorea: Clinical, genetic, and pathological findings. Annals of Neurology, 2003, 54, 244-247.	2.8	90
60	Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathologica, 2019, 137, 879-899.	3.9	90
61	Investigation of C9orf72 in 4 Neurodegenerative Disorders. Archives of Neurology, 2012, 69, 1583.	4.9	89
62	Early-Onset Alzheimer's Disease: What Is Missing in Research?. Current Neurology and Neuroscience Reports, 2021, 21, 4.	2.0	88
63	Mutation analysis of <i>CHCHD10 </i> in different neurodegenerative diseases. Brain, 2015, 138, e380-e380.	3.7	86
64	DNA Methylation Clocks and Their Predictive Capacity for Aging Phenotypes and Healthspan. Neuroscience Insights, 2020, 15, 263310552094222.	0.9	86
65	Late-onset vs nonmendelian early-onset Alzheimer disease. Neurology: Genetics, 2020, 6, e512.	0.9	82
66	Brain levels of CDK5 activator p25 are not increased in Alzheimer's or other neurodegenerative diseases with neurofibrillary tangles. Journal of Neurochemistry, 2003, 86, 572-581.	2.1	81
67	Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and Alzheimer's diseases. Neurobiology of Aging, 2016, 38, 214.e7-214.e10.	1.5	78
68	Molecular genetics of Alzheimer $\hat{E}\frac{1}{4}$ s disease: the role of \hat{I}^2 -amyloid and the presenilins. Current Opinion in Neurology, 2000, 13, 377-384.	1.8	75
69	The Solved and Unsolved Mysteries of the Genetics of Early-Onset Alzheimer 's Disease. NeuroMolecular Medicine, 2002, 2, 01-10.	1.8	7 5
70	Hypermethylation of the CpG-island near the C9orf72 G4C2-repeat expansion in FTLD patients. Human Molecular Genetics, 2014, 23, 5630-5637.	1.4	74
71	Drug Repositioning for Diabetes Based on 'Omics' Data Mining. PLoS ONE, 2015, 10, e0126082.	1.1	74
72	Motor neuron disease and frontotemporal dementia: sometimes related, sometimes not. Experimental Neurology, 2014, 262, 75-83.	2.0	72

#	Article	IF	Citations
73	Carboxyl-terminal Fragments of Alzheimer \hat{l}^2 -Amyloid Precursor Protein Accumulate in Restricted and Unpredicted Intracellular Compartments in Presenilin 1-deficient Cells. Journal of Biological Chemistry, 2000, 275, 36794-36802.	1.6	71
74	Low molecular weight species of TDP-43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death. Acta Neuropathologica, 2015, 130, 49-61.	3.9	71
75	Conversion to Dementia among Two Groups with Cognitive Impairment. Dementia and Geriatric Cognitive Disorders, 2004, 18, 307-313.	0.7	67
76	Association studies of cholesterol metabolism genes (CH25H, ABCA1 and CH24H) in Alzheimer's disease. Neuroscience Letters, 2006, 391, 142-146.	1.0	64
77	White matter hyperintensities are seen only in GRN mutation carriers in the GENFI cohort. NeuroImage: Clinical, 2017, 15, 171-180.	1.4	63
78	Loss of CHCHD10–CHCHD2 complexes required for respiration underlies the pathogenicity of a CHCHD10 mutation in ALS. Human Molecular Genetics, 2018, 27, 178-189.	1.4	61
79	Shared genetic contribution to ischemic stroke and Alzheimer's disease. Annals of Neurology, 2016, 79, 739-747.	2.8	56
80	Genetic complexity of Alzheimer's disease: Successes and challenges. Journal of Alzheimer's Disease, 2006, 9, 381-387.	1.2	55
81	Fâ€box/ <scp>LRR</scp> â€repeat protein 7 is genetically associated with Alzheimer's disease. Annals of Clinical and Translational Neurology, 2015, 2, 810-820.	1.7	54
82	Jump from Pre-mutation to Pathologic Expansion in C9orf72. American Journal of Human Genetics, 2015, 96, 962-970.	2.6	50
83	Genetic Variability in <i>CHMP2B</i> and Frontotemporal Dementia. Neurodegenerative Diseases, 2006, 3, 129-133.	0.8	47
84	Functional network resilience to pathology in presymptomatic genetic frontotemporal dementia. Neurobiology of Aging, 2019, 77, 169-177.	1.5	47
85	DNA methylation age-acceleration is associated with disease duration and age at onset in C9orf72 patients. Acta Neuropathologica, 2017, 134, 271-279.	3.9	46
86	Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 1236.	4.5	46
87	C9orf72 isoforms in Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. Brain Research, 2016, 1647, 43-49.	1.1	45
88	Progression of Behavioral Disturbances and Neuropsychiatric Symptoms in Patients With Genetic Frontotemporal Dementia. JAMA Network Open, 2021, 4, e2030194.	2.8	42
89	Rarity of the Alzheimer Disease–Protective <i>APP</i> A673T Variant in the United States. JAMA Neurology, 2015, 72, 209.	4.5	41
90	Cerebral perfusion changes in presymptomatic genetic frontotemporal dementia: a GENFI study. Brain, 2019, 142, 1108-1120.	3.7	41

#	Article	IF	Citations
91	Identical twins with the <i>C9orf72</i> repeat expansion are discordant for ALS. Neurology, 2014, 83, 1476-1478.	1.5	40
92	MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis. Brain, 2016, 139, 86-100.	3.7	40
93	Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals. JAMA Neurology, 2015, 72, 1313.	4.5	39
94	A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain, 2018, 141, 2895-2907.	3.7	39
95	Presymptomatic white matter integrity loss in familial frontotemporal dementia in the <scp>GENFI</scp> cohort: A crossâ€sectional diffusion tensor imaging study. Annals of Clinical and Translational Neurology, 2018, 5, 1025-1036.	1.7	39
96	Evidence of Recessive Alzheimer Disease Loci in a Caribbean Hispanic Data Set. JAMA Neurology, 2013, 70, 1261-7.	4.5	37
97	The relationship between brain atrophy and cognitive-behavioural symptoms in retired Canadian football players with multiple concussions. NeuroImage: Clinical, 2018, 19, 551-558.	1.4	37
98	Further examination of the candidate genes in chromosome 12p13 locus for late-onset Alzheimer disease. Neurogenetics, 2008, 9, 127-138.	0.7	36
99	Mutation analysis of patients with neurodegenerative disorders using NeuroX array. Neurobiology of Aging, 2015, 36, 545.e9-545.e14.	1.5	36
100	Novel Presenilin 1 Mutations Associated With Early Onset of Dementia in a Family With Both Early-Onset and Late-Onset Alzheimer Disease. Archives of Neurology, 2000, 57, 1454-7.	4.9	35
101	Genetic and epigenetic study of ALS-discordant identical twins with double mutations in <i>SOD1</i> and <i>ARHGEF28</i> . Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1268-1270.	0.9	35
102	The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis. PLoS ONE, 2015, 10, e0133741.	1.1	35
103	Expanded Genomewide Scan Implicates a Novel Locus at 3q28 Among Caribbean Hispanics With Familial Alzheimer Disease. Archives of Neurology, 2006, 63, 1591.	4.9	34
104	Olfactory heterogeneity in <i>LRRK2</i> related Parkinsonism. Movement Disorders, 2010, 25, 2879-2883.	2.2	33
105	Dysregulation of chromatin remodelling complexes in amyotrophic lateral sclerosis. Human Molecular Genetics, 2017, 26, 4142-4152.	1.4	33
106	Unaffected mosaic <i>C9orf72</i> case. Neurology, 2018, 90, e323-e331.	1.5	33
107	The inner fluctuations of the brain in presymptomatic Frontotemporal Dementia: The chronnectome fingerprint. Neurolmage, 2019, 189, 645-654.	2.1	33
108	Mutation of the conserved N-terminal cysteine (Cys92) of human presenilin 1 causes increased \hat{A}^2 42 secretion in mammalian cells but impaired Notch/lin-I2 signalling in C. elegans. NeuroReport, 2000, 11, 3227-3230.	0.6	32

#	Article	IF	CITATIONS
109	LIV-1 ZIP Ectodomain Shedding in Prion-Infected Mice Resembles Cellular Response to Transition Metal Starvation. Journal of Molecular Biology, 2012, 422, 556-574.	2.0	32
110	Genetic association study of PINK1 coding polymorphisms in Parkinson's disease. Neuroscience Letters, 2004, 372, 226-229.	1.0	31
111	Homozygous and heterozygous PINK1 mutations: Considerations for diagnosis and care of Parkinson's disease patients. Movement Disorders, 2006, 21, 875-879.	2.2	31
112	A presenilin-1 Thr116Asn substitution in a family with early-onset Alzheimer $\hat{E}\frac{1}{4}$ s disease. NeuroReport, 1999, 10, 2255-2260.	0.6	30
113	DNA methylation age acceleration is associated with ALS age of onset and survival. Acta Neuropathologica, 2020, 139, 943-946.	3.9	30
114	Genomewide Association Studies of <scp><i>LRRK2</i></scp> Modifiers of Parkinson's Disease. Annals of Neurology, 2021, 90, 76-88.	2.8	30
115	Heritability and genetic variance of dementia with Lewy bodies. Neurobiology of Disease, 2019, 127, 492-501.	2.1	29
116	Mutation analysis of the MS4A and TREM gene clusters inÂaÂcase-control Alzheimer's disease data set. Neurobiology of Aging, 2016, 42, 217.e7-217.e13.	1.5	28
117	Differential early subcortical involvement in genetic FTD within the GENFI cohort. NeuroImage: Clinical, 2021, 30, 102646.	1.4	28
118	White matter hyperintensities in progranulin-associated frontotemporal dementia: A longitudinal GENFI study. NeuroImage: Clinical, 2019, 24, 102077.	1.4	27
119	Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. Acta Neuropathologica Communications, 2020, 8, 5.	2.4	27
120	Amyloid- \hat{l}^2 -protein isoforms in brain of subjects with PS1-linked, \hat{l}^2 APP-linked and sporadic Alzheimer disease. Molecular Brain Research, 1998, 56, 178-185.	2.5	26
121	Age-at-onset linkage analysis in Caribbean Hispanics with familial late-onset Alzheimer's disease. Neurogenetics, 2008, 9, 51-60.	0.7	26
122	Using global team science to identify genetic parkinson's disease worldwide. Annals of Neurology, 2019, 86, 153-157.	2.8	26
123	Social cognition impairment in genetic frontotemporal dementia within the GENFI cohort. Cortex, 2020, 133, 384-398.	1.1	26
124	Parkinsonism due to A53E αâ€synuclein gene mutation: Clinical, genetic, epigenetic, and biochemical features. Movement Disorders, 2018, 33, 1950-1955.	2.2	25
125	White matter hyperintensities in autopsy-confirmed frontotemporal lobar degeneration and Alzheimer $\hat{\mathbf{a}} \in \mathbb{R}$ disease. Alzheimer's Research and Therapy, 2021, 13, 129.	3.0	25
126	Clinical Findings in a Large Family With a Parkin Ex3Δ40 Mutation. Archives of Neurology, 2004, 61, 701.	4.9	24

#	Article	IF	Citations
127	Long-Term Statin Therapy and CSF Cholesterol Levels: Implications for Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders, 2009, 27, 519-524.	0.7	24
128	T313M PINK1 Mutation in an Extended Highly Consanguineous Saudi Family With Early-Onset Parkinson Disease. Archives of Neurology, 2006, 63, 1483.	4.9	23
129	Amyloid- \hat{l}^2 toxicity modulates tau phosphorylation through the PAX6 signalling pathway. Brain, 2021, 144, 2759-2770.	3.7	23
130	Clinical and genetic study of a Brazilian family with spastic paraplegia (SPG6 locus). Movement Disorders, 2006, 21, 279-281.	2.2	22
131	Diagnostic delay in Parkinson's disease caused by PRKN mutations. Parkinsonism and Related Disorders, 2019, 63, 217-220.	1.1	21
132	Childhood Onset in Familial Prion Disease With a Novel Mutation in the PRNP Gene. Archives of Neurology, 2006, 63, 1016.	4.9	20
133	The G2019S <i>LRRK2</i> mutation in Brazilian patients with Parkinson's disease: Phenotype in monozygotic twins. Movement Disorders, 2008, 23, 290-294.	2.2	20
134	Intra-Familial Clinical Heterogeneity due to FTLD-U with TDP-43 Proteinopathy Caused by a Novel Deletion in Progranulin Gene (PGRN). Journal of Alzheimer's Disease, 2011, 22, 1123-1133.	1.2	20
135	Inbreeding among Caribbean Hispanics from the Dominican Republic and its effects on risk of Alzheimer disease. Genetics in Medicine, 2015, 17, 639-643.	1.1	20
136	Genetic Variations in ABCA7 Can Increase Secreted Levels of Amyloid-Î ² 40 and Amyloid-Î ² 42 Peptides and ABCA7 Transcription in Cell Culture Models. Journal of Alzheimer's Disease, 2016, 53, 875-892.	1.2	20
137	Marked Differences in C9orf72 Methylation Status and Isoform Expression between C9/ALS Human Embryonic and Induced Pluripotent Stem Cells. Stem Cell Reports, 2016, 7, 927-940.	2.3	19
138	Faster Cortical Thinning and Surface Area Loss in Presymptomatic and Symptomatic <i>C9orf72</i> Repeat Expansion Adult Carriers. Annals of Neurology, 2020, 88, 113-122.	2.8	19
139	Heart rate variability in leucineâ€rich repeat kinase 2â€associated Parkinson's disease. Movement Disorders, 2017, 32, 610-614.	2,2	18
140	Parkinson's Disease, <scp><i>NOTCH3</i></scp> Genetic Variants, and White Matter Hyperintensities. Movement Disorders, 2020, 35, 2090-2095.	2.2	18
141	Mutation analysis of CHCHD2 in Canadian patients with familial Parkinson's disease. Neurobiology of Aging, 2016, 38, 217.e7-217.e8.	1.5	16
142	Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort. NeuroImage, 2019, 188, 282-290.	2.1	16
143	Distinct biochemical signatures characterize peripherin isoform expression in both traumatic neuronal injury and motor neuron disease. Journal of Neurochemistry, 2010, 114, 1177-1192.	2.1	15
144	<i>C9orf72</i> and <i>ATXN2</i> repeat expansions coexist in a family with ataxia, dementia, and parkinsonism. Movement Disorders, 2017, 32, 158-162.	2.2	15

#	Article	IF	CITATIONS
145	Interaction of APOE4 alleles and PET tau imaging in former contact sport athletes. NeuroImage: Clinical, 2020, 26, 102212.	1.4	15
146	Characteristics of the Ontario Neurodegenerative Disease Research Initiative cohort. Alzheimer's and Dementia, 2023, 19, 226-243.	0.4	15
147	Statins Differentially Affect Amyloid Precursor Protein Metabolism in Presymptomatic PS1 and Non-PS1 Subjects. Archives of Neurology, 2007, 64, 1672.	4.9	13
148	Mutation analysis of C9orf72 in patients with corticobasal syndrome. Neurobiology of Aging, 2015, 36, 2905.e1-2905.e5.	1.5	13
149	A comprehensive screening of copy number variability in dementia with Lewy bodies. Neurobiology of Aging, 2019, 75, 223.e1-223.e10.	1.5	13
150	Neuropathologic description of <i>CHCHD10</i> mutated amyotrophic lateral sclerosis. Neurology: Genetics, 2020, 6, e394.	0.9	13
151	Frequent Missense and Insertion/Deletion Polymorphisms in the Ovine Shadoo Gene Parallel Species-Specific Variation in PrP. PLoS ONE, 2009, 4, e6538.	1.1	13
152	Association studies between the plasmin genes and late-onset Alzheimer's disease. Neurobiology of Aging, 2007, 28, 1041-1043.	1.5	12
153	Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies. Neurobiology of Aging, 2017, 49, 214.e13-214.e15.	1.5	12
154	An APOE -independent cis -eSNP on chromosome 19q13.32 influences tau levels and late-onset Alzheimer's disease risk. Neurobiology of Aging, 2018, 66, 178.e1-178.e8.	1.5	12
155	Absence of association between Alzheimer disease and the regulatory region polymorphism of the PS2 gene in an Italian population. Neuroscience Letters, 2003, 343, 210-212.	1.0	11
156	LRP10 in α-synucleinopathies. Lancet Neurology, The, 2018, 17, 1033-1034.	4.9	11
157	LRP10 in α-synucleinopathies. Lancet Neurology, The, 2018, 17, 1032-1033.	4.9	11
158	Genetic and epigenetic study of an Alzheimer's disease family with monozygotic triplets. Brain, 2019, 142, 3375-3381.	3.7	11
159	MRI-visible perivascular space volumes, sleep duration and daytime dysfunction in adults with cerebrovascular disease. Sleep Medicine, 2021, 83, 83-88.	0.8	11
160	Genetics and Genomics of Late-Onset Alzheimer's Disease and Its Endophenotypes. International Journal of Alzheimer's Disease, 2011, 2011, 1-2.	1.1	10
161	Comprehensive mutational analysis of LRRK2 reveals variants supporting association with autosomal dominant Parkinson's disease. Journal of Human Genetics, 2011, 56, 671-675.	1.1	10
162	Actigraphy Detects Greater Intra-Individual Variability During Gait in Non-Manifesting LRRK2 Mutation Carriers. Journal of Parkinson's Disease, 2018, 8, 131-139.	1.5	10

#	Article	IF	CITATIONS
163	Gene Expression Imputation Across Multiple Tissue Types Provides Insight Into the Genetic Architecture of Frontotemporal Dementia and Its Clinical Subtypes. Biological Psychiatry, 2021, 89, 825-835.	0.7	10
164	Genetic markers in the diagnosis of Alzheimer's disease. Journal of Alzheimer's Disease, 2001, 3, 293-304.	1.2	9
165	Genetic studies of GRN and IFT74 in amyotrophic lateral sclerosis. Neurobiology of Aging, 2008, 29, 1279-1282.	1.5	9
166	A Novel PS1 Gene Mutation in a Large Aboriginal Kindred. Canadian Journal of Neurological Sciences, 2010, 37, 359-364.	0.3	9
167	LRRK2 and Parkin mutations in a family with parkinsonismâ€"Lack of genotypeâ€"phenotype correlation. Neurobiology of Aging, 2010, 31, 721-722.	1.5	9
168	Genetic analysis of CHCHD2 and CHCHD10 in Italian patients with Parkinson's disease. Neurobiology of Aging, 2017, 53, 193.e7-193.e8.	1.5	8
169	Ultra-rare mutations in <i>SRCAP</i> segregate in Caribbean Hispanic families with Alzheimer disease. Neurology: Genetics, 2017, 3, e178.	0.9	8
170	The Intersection between COVID-19, the Gene Family of ACE2 and Alzheimer's Disease. Neuroscience Insights, 2020, 15, 263310552097574.	0.9	8
171	Disease-related cortical thinning in presymptomatic granulin mutation carriers. Neurolmage: Clinical, 2021, 29, 102540.	1.4	8
172	No evidence for tau duplications in frontal temporal dementia families showing genetic linkage to the tau locus in which tau mutations have not been found. Neuroscience Letters, 2004, 363, 99-101.	1.0	7
173	Does <i>BDNF</i> Val66Met contribute to preclinical Alzheimer's disease?. Brain, 2016, 139, 2586-2589.	3.7	7
174	Genetic Complexity of Early-Onset Alzheimer's Disease. , 2018, , 29-50.		7
175	Genetic Variation in the Ontario Neurodegenerative Disease Research Initiative. Canadian Journal of Neurological Sciences, 2019, 46, 491-498.	0.3	7
176	Combined epigenetic/genetic study identified an ALS age of onset modifier. Acta Neuropathologica Communications, 2021, 9, 75.	2.4	7
177	Lack of association between Alzheimer's disease and the promoter region polymorphisms of the nicastrin gene. Neuroscience Letters, 2004, 363, 49-53.	1.0	6
178	Time-course global proteome analyses reveal an inverse correlation between $A\hat{l}^2$ burden and immunoglobulin M levels in the APPNL-F mouse model of Alzheimer disease. PLoS ONE, 2017, 12, e0182844.	1.1	6
179	Variant Alzheimer's Disease with Spastic Paraparesis and Supranuclear Gaze Palsy. Canadian Journal of Neurological Sciences, 2013, 40, 249-251.	0.3	5
180	A novel mutation in the SPG3A gene (atlastin) in hereditary spastic paraplegia. Journal of Neurology, 2007, 254, 972-974.	1.8	4

#	Article	IF	CITATIONS
181	Unilateral pallidotomy in a patient with parkinsonism and G2019S <i>LRRK2</i> mutation. Movement Disorders, 2009, 24, 791-792.	2.2	3
182	$Fc\hat{l}^3$ Receptor Polymorphisms Do Not Predict Response to Intravenous Immunoglobulin in Myasthenia Gravis. Journal of Clinical Neuromuscular Disease, 2012, 14, 1-6.	0.3	3
183	Comparison of Clinical and Pathological Phenotypes in Two Ethnically and Geographically Unrelated Pedigrees Segregating an Equivalent Presenilin 1 Mutation. Journal of Neuropsychiatry and Clinical Neurosciences, 2000, 12, 359-363.	0.9	2
184	Whole-Genome Study of a Multigenerational Family with Essential Tremor. Canadian Journal of Neurological Sciences, $2021, 16.$	0.3	2
185	Examining empathy deficits across familial forms of frontotemporal dementia within the GENFI cohort. Cortex, 2022, 150, 12-28.	1.1	2
186	Case of a Man with Hemichorea and Behavioral Changes: "A Red Herring― Movement Disorders Clinical Practice, 2022, 9, 501-507.	0.8	2
187	Genetic Variations in ABCA7 Can Increase Secreted Levels of Amyloid-Î ² 40 and Amyloid-Î ² 42 Peptides and ABCA7 Transcription in Cell Culture Models. Journal of Alzheimer's Disease, 2018, 66, 853-854.	1.2	1
188	Genomic study of a large family with complex neurological phenotype including hearing loss, imbalance and action tremor. Neurobiology of Aging, 2022, 113, 137-142.	1.5	1
189	Clinical Reasoning: A 42-year-old man with unilateral leg weakness. Neurology, 2018, 90, e1085-e1090.	1.5	O
190	Response to a letter to the editor. Neurobiology of Aging, 2019, 78, 195-196.	1.5	0
191	Determining whether Sex and Zygosity modulates the association between ApoE4 and Psychosis in Neurodegenerative Disease Cohorts using the ONDRI platform. American Journal of Geriatric Psychiatry, 2022, 30, S90-S91.	0.6	0