Zhen-Xiang Xi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3760838/publications.pdf

Version: 2024-02-01

45 2,905 25 46
papers citations h-index g-index

51 51 51 3667 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Diversity patterns and conservation gaps of Magnoliaceae species in China. Science of the Total Environment, 2022, 813, 152665.	8.0	11
2	Species Tree Estimation and the Impact of Gene Loss Following Whole-Genome Duplication. Systematic Biology, 2022, 71, 1348-1361.	5.6	10
3	Warming-induced increase in carbon uptake is linked to earlier spring phenology in temperate and boreal forests. Nature Communications, 2022, 13 , .	12.8	27
4	Phylotranscriptomics reveals extensive gene duplication in the subtribe Gentianinae (Gentianaceae). Journal of Systematics and Evolution, 2021, 59, 1198-1208.	3.1	21
5	The Perfect Storm: Gene Tree Estimation Error, Incomplete Lineage Sorting, and Ancient Gene Flow Explain the Most Recalcitrant Ancient Angiosperm Clade, Malpighiales. Systematic Biology, 2021, 70, 491-507.	5.6	61
6	A chromosomeâ€level genome assembly for the tertiary relict plant ⟨i>Tetracentron sinense⟨ i> oliv. (trochodendraceae). Molecular Ecology Resources, 2021, 21, 1186-1199.	4.8	12
7	Population Transcriptomics Reveals Gene Flow and Introgression Between Two Non-sister Alpine Gentians. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	2
8	Deeply Altered Genome Architecture in the Endoparasitic Flowering Plant Sapria himalayana Griff. (Rafflesiaceae). Current Biology, 2021, 31, 1002-1011.e9.	3.9	63
9	Genome-wide (ChIP-seq) identification of target genes regulated by WRKY33 during submergence stress in Arabidopsis. BMC Genomic Data, 2021, 22, 16.	1.7	5
10	A chromosome-level Camptotheca acuminata genome assembly provides insights into the evolutionary origin of camptothecin biosynthesis. Nature Communications, 2021, 12, 3531.	12.8	66
11	Chromosomeâ€level genome assembly of Sichuan pepper provides insights into apomixis, drought tolerance, and alkaloid biosynthesis. Molecular Ecology Resources, 2021, 21, 2533-2545.	4.8	30
12	Contrasting temporal variations in responses of leaf unfolding to daytime and nighttime warming. Global Change Biology, 2021, 27, 5084-5093.	9.5	20
13	The Conservation of Chloroplast Genome Structure and Improved Resolution of Infrafamilial Relationships of Crassulaceae. Frontiers in Plant Science, 2021, 12, 631884.	3.6	16
14	Genome evolution of the psammophyte <i>Pugionium</i> for desert adaptation and further speciation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	22
15	Phylogenomics of the genus <i>Populus</i> reveals extensive interspecific gene flow and balancing selection. New Phytologist, 2020, 225, 1370-1382.	7.3	93
16	A chromosome-scale reference genome of Lobularia maritima, an ornamental plant with high stress tolerance. Horticulture Research, 2020, 7, 197.	6.3	6
17	Water lily (<i>Nymphaea thermarum</i>) genome reveals variable genomic signatures of ancient vascular cambium losses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8649-8656.	7.1	33
18	Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution. Nature Plants, 2020, 6, 215-222.	9.3	88

#	Article	IF	CITATIONS
19	Machine learning predicts large scale declines in native plant phylogenetic diversity. New Phytologist, 2020, 227, 1544-1556.	7.3	19
20	Widespread ancient wholeâ€genome duplications in Malpighiales coincide with Eocene global climatic upheaval. New Phytologist, 2019, 221, 565-576.	7.3	86
21	Intergeneric Relationships within the Family Salicaceae s.l. based on Plastid Phylogenomics. International Journal of Molecular Sciences, 2019, 20, 3788.	4.1	18
22	The complete chloroplast genome of the endangered species Oyama sinensis (Magnoliaceae). Mitochondrial DNA Part B: Resources, 2019, 4, 830-831.	0.4	1
23	A chromosome-level genome assembly of the Chinese tupelo Nyssa sinensis. Scientific Data, 2019, 6, 282.	5.3	10
24	The complete plastome of Nyssa yunnanensis, a critically endangered tree species. Conservation Genetics Resources, 2019, 11, 313-315.	0.8	1
25	Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. Journal of Biogeography, 2018, 45, 1334-1344.	3.0	115
26	Taxon sampling effects on the quantification and comparison of community phylogenetic diversity. Molecular Ecology, 2018, 27, 1296-1308.	3.9	34
27	Ancient polymorphisms and divergence hitchhiking contribute to genomic islands of divergence within a poplar species complex. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E236-E243.	7.1	126
28	Plastome phylogeny and lineage diversification of Salicaceae with focus on poplars and willows. Ecology and Evolution, 2018, 8, 7817-7823.	1.9	47
29	Unraveling the biogeographical history of Chrysobalanaceae from plastid genomes. American Journal of Botany, 2016, 103, 1089-1102.	1.7	20
30	The Impact of Missing Data on Species Tree Estimation. Molecular Biology and Evolution, 2016, 33, 838-860.	8.9	134
31	Implementing and testing the multispecies coalescent model: A valuable paradigm for phylogenomics. Molecular Phylogenetics and Evolution, 2016, 94, 447-462.	2.7	321
32	Phylogeny of Elatinaceae and the Tropical Gondwanan Origin of the Centroplacaceae(Malpighiaceae,) Tj ETQq0 ()	Verlock 10 Tf
33	Estimating phylogenetic trees from genomeâ€scale data. Annals of the New York Academy of Sciences, 2015, 1360, 36-53.	3.8	165
34	Horizontal gene transfer in parasitic plants. Current Opinion in Plant Biology, 2015, 26, 14-19.	7.1	78
35	Phylogeny of Gracilariaceae (Rhodophyta): evidence from plastid and mitochondrial nucleotide sequences. Journal of Phycology, 2015, 51, 356-366.	2.3	38
36	Genes with minimal phylogenetic information are problematic for coalescent analyses when gene tree estimation is biased. Molecular Phylogenetics and Evolution, 2015, 92, 63-71.	2.7	104

#	Article	IF	CITATIONS
37	Coalescent Methods Are Robust to the Simultaneous Effects of Long Branches and Incomplete Lineage Sorting. Molecular Biology and Evolution, 2015, 32, 791-805.	8.9	69
38	The establishment of Central American migratory corridors and the biogeographic origins of seasonally dry tropical forests in Mexico. Frontiers in Genetics, 2014, 5, 433.	2.3	32
39	Coalescent versus Concatenation Methods and the Placement of Amborella as Sister to Water Lilies. Systematic Biology, 2014, 63, 919-932.	5.6	166
40	Massive Mitochondrial Gene Transfer in a Parasitic Flowering Plant Clade. PLoS Genetics, 2013, 9, e1003265.	3.5	115
41	Phylogenomics and Coalescent Analyses Resolve Extant Seed Plant Relationships. PLoS ONE, 2013, 8, e80870.	2.5	69
42	Horizontal transfer of expressed genes in a parasitic flowering plant. BMC Genomics, 2012, 13, 227.	2.8	90
43	Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17519-17524.	7.1	305
44	Phylogenetic Analysis of the Plastid Inverted Repeat for 244 Species: Insights into Deeper-Level Angiosperm Relationships from a Long, Slowly Evolving Sequence Region. International Journal of Plant Sciences, 2011, 172, 541-558.	1.3	80
45	Species delimitation of North American Nyssa species. Journal of Systematics and Evolution, 0, , .	3.1	2