
Johannes Overgaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3760791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Upper thermal limits of <i>Drosophila</i> are linked to species distributions and strongly constrained phylogenetically. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16228-16233.	3.3	454
2	The Integrative Physiology of Insect Chill Tolerance. Annual Review of Physiology, 2017, 79, 187-208.	5.6	295
3	PHYLOGENETIC CONSTRAINTS IN KEY FUNCTIONAL TRAITS BEHIND SPECIES' CLIMATE NICHES: PATTERNS OF DESICCATION AND COLD RESISTANCE ACROSS 95 <i>DROSOPHILA </i> SPECIES. Evolution; International Journal of Organic Evolution, 2012, 66, 3377-3389.	1.1	261
4	Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2016, 192, 64-78.	0.8	252
5	Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. Journal of Insect Physiology, 2007, 53, 1218-1232.	0.9	232
6	Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. Journal of Insect Physiology, 2005, 51, 1173-1182.	0.9	224
7	Thermal Tolerance in Widespread and Tropical <i>Drosophila</i> Species: Does Phenotypic Plasticity Increase with Latitude?. American Naturalist, 2011, 178, S80-S96.	1.0	219
8	How to assess <i>Drosophila</i> cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Functional Ecology, 2015, 29, 55-65.	1.7	214
9	Costs and benefits of cold acclimation in field-released <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 216-221.	3.3	212
10	Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. Journal of Experimental Biology, 2018, 221, .	0.8	204
11	A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of <i>Drosophila melanogaster</i> from eastern Australia. Journal of Evolutionary Biology, 2010, 23, 2484-2493.	0.8	193
12	Sensitivity to thermal extremes in Australian <i>Drosophila</i> implies similar impacts of climate change on the distribution of widespread and tropical species. Global Change Biology, 2014, 20, 1738-1750.	4.2	181
13	Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R205-R212.	0.9	170
14	Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster. Journal of Insect Physiology, 2008, 54, 619-629.	0.9	148
15	Validity of Thermal Ramping Assays Used to Assess Thermal Tolerance in Arthropods. PLoS ONE, 2012, 7, e32758.	1.1	128
16	Rapid thermal adaptation during field temperature variations in Drosophila melanogaster. Cryobiology, 2008, 56, 159-162.	0.3	127
17	How to assess <i>Drosophila</i> heat tolerance: Unifying static and dynamic tolerance assays to predict heat distribution limits. Functional Ecology, 2019, 33, 629-642.	1.7	117
18	Effects of temperature on the metabolic response to feeding in Python molurus. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2002, 133, 519-527.	0.8	114

#	Article	IF	CITATIONS
19	Evolutionary and ecological patterns of thermal acclimation capacity in Drosophila: is it important for keeping up with climate change?. Current Opinion in Insect Science, 2016, 17, 98-104.	2.2	113
20	ECOLOGY: The Heartbreak of Adapting to Global Warming. Science, 2007, 315, 49-50.	6.0	112
21	Proteomic profiling of thermal acclimation in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 2013, 43, 352-365.	1.2	98
22	The respiratory consequences of feeding in amphibians and reptiles. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2001, 128, 533-547.	0.8	95
23	Cold-induced depolarization of insect muscle: Differing roles of extracellular K+ during acute and chronic chilling. Journal of Experimental Biology, 2014, 217, 2930-8.	0.8	90
24	The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance. Scientific Reports, 2015, 5, 18607.	1.6	89
25	The Effects of Fasting Duration on the Metabolic Response to Feeding inPython molurus: An Evaluation of the Energetic Costs Associated with Gastrointestinal Growth and Upregulation. Physiological and Biochemical Zoology, 2002, 75, 360-368.	0.6	81
26	The influence of developmental stage on cold shock resistance and ability to cold-harden in Drosophila melanogaster. Journal of Insect Physiology, 2007, 53, 179-186.	0.9	80
27	Seasonal acquisition of chill tolerance and restructuring of membrane glycerophospholipids in an overwintering insect: triggering by low temperature, desiccation and diapause progression. Journal of Experimental Biology, 2006, 209, 4102-4114.	0.8	78
28	Why do insects enter and recover from chill coma? Low temperature and high extracellular potassium compromise muscle function in <i>Locusta migratoria</i> . Journal of Experimental Biology, 2014, 217, 1297-1306.	0.8	78
29	Reorganization of membrane lipids during fast and slow cold hardening in Drosophila melanogaster. Physiological Entomology, 2006, 31, 328-335.	0.6	77
30	Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 <i>Drosophila</i> species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180548.	1.8	77
31	Respiratory consequences of feeding in the snake Python molorus. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 1999, 124, 359-365.	0.8	76
32	Role of HSF activation for resistance to heat, cold and high-temperature knock-down. Journal of Insect Physiology, 2005, 51, 1320-1329.	0.9	76
33	Rapid cold hardening improves recovery of ion homeostasis and chill coma recovery in the migratory locust <i>Locusta migratoria</i> . Journal of Experimental Biology, 2013, 216, 1630-7.	0.8	76
34	α-Adrenergic regulation of systemic peripheral resistance and blood flow distribution in the turtle Trachemys scripta during anoxic submergence at 5°C and 21°C. Journal of Experimental Biology, 2004, 207, 269-283.	0.8	73
35	Cold exposure causes cell death by depolarization-mediated Ca ²⁺ overload in a chill-susceptible insect. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9737-E9744.	3.3	72
36	Concurrent effects of cold and hyperkalaemia cause insect chilling injury. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151483.	1.2	71

#	Article	IF	CITATIONS
37	Role of temperature on growth and metabolic rate in the tenebrionid beetles Alphitobius diaperinus and Tenebrio molitor. Journal of Insect Physiology, 2018, 107, 89-96.	0.9	71
38	Sodium distribution predicts the chill tolerance of <i>Drosophila melanogaster</i> raised in different thermal conditions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R823-R831.	0.9	65
39	Assessing population and environmental effects on thermal resistance in Drosophila melanogaster using ecologically relevant assays. Journal of Thermal Biology, 2011, 36, 409-416.	1.1	64
40	Metabolic consequences of feeding and fasting on nutritionally different diets in the wolf spider Pardosa prativaga. Journal of Insect Physiology, 2010, 56, 1095-1100.	0.9	57
41	Aerobic scope and cardiovascular oxygen transport is not compromised at high temperatures in the toad <i>Rhinella marina</i> . Journal of Experimental Biology, 2012, 215, 3519-26.	0.8	56
42	The central nervous system and muscular system play different roles for chill coma onset and recovery in insects. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 233, 10-16.	0.8	56
43	A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress. Scientific Reports, 2021, 11, 12840.	1.6	56
44	Body metal concentrations and glycogen reserves in earthworms (Dendrobaena octaedra) from contaminated and uncontaminated forest soil. Environmental Pollution, 2011, 159, 190-197.	3.7	53
45	Adrenergic control of the cardiovascular system in the turtle <i>Trachemys scripta</i> . Journal of Experimental Biology, 2002, 205, 3335-3345.	0.8	49
46	Cold-acclimation improves chill tolerance in the migratory locust through preservation of ion balance and membrane potential. Journal of Experimental Biology, 2017, 220, 487-496.	0.8	48
47	Tribute to P. L. Lutz: cardiac performance and cardiovascular regulation during anoxia/hypoxia in freshwater turtles. Journal of Experimental Biology, 2007, 210, 1687-1699.	0.8	47
48	Plasticity for desiccation tolerance across <i>Drosophila</i> species is affected by phylogeny and climate in complex ways. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180048.	1.2	46
49	Central nervous shutdown underlies acute cold tolerance in tropical and temperate <i>Drosophila</i> species. Journal of Experimental Biology, 2018, 221, .	0.8	46
50	Differences in cold and drought tolerance of high arctic and sub-arctic populations of Megaphorura arctica Tullberg 1876 (Onychiuridae: Collembola). Cryobiology, 2007, 55, 315-323.	0.3	45
51	Dual roles of glucose in the freeze-tolerant earthworm <i>Dendrobaena octaedra</i> : cryoprotection and fuel for metabolism. Journal of Experimental Biology, 2009, 212, 859-866.	0.8	44
52	Feeding impairs chill coma recovery in the migratory locust (Locusta migratoria). Journal of Insect Physiology, 2013, 59, 1041-1048.	0.9	43
53	Students' motivation toward laboratory work in physiology teaching. American Journal of Physiology - Advances in Physiology Education, 2016, 40, 313-318.	0.8	41
54	A critical test of Drosophila anaesthetics: Isoflurane and sevoflurane are benign alternatives to cold and CO2. Journal of Insect Physiology, 2017, 101, 97-106.	0.9	41

#	Article	IF	CITATIONS
55	The rapid cold hardening response of Drosophila melanogaster: Complex regulation across different levels of biological organization. Journal of Insect Physiology, 2014, 62, 46-53.	0.9	39
56	Muscle membrane potential and insect chill coma. Journal of Experimental Biology, 2015, 218, 2492-5.	0.8	39
57	Influence of storage conditions on viability of quiescent copepod eggs (Acartia tonsa Dana): effects of temperature, salinity and anoxia. Aquaculture Research, 2006, 37, 625-631.	0.9	38
58	Benefits of Group Living Include Increased Feeding Efficiency and Lower Mass Loss during Desiccation in the Social and Inbreeding Spider Stegodyphus dumicola. Frontiers in Physiology, 2016, 7, 18.	1.3	38
59	Dietary protein content affects evolution for body size, body fat and viability in <i>Drosophila melanogaster</i> . Biology Letters, 2011, 7, 269-272.	1.0	37
60	Low evolutionary potential for egg-to-adult viability in <i>Drosophila melanogaster</i> at high temperatures. Evolution; International Journal of Organic Evolution, 2015, 69, 803-814.	1.1	37
61	Adrenergic control of the cardiovascular system in the turtle Trachemys scripta. Journal of Experimental Biology, 2002, 205, 3335-45.	0.8	36
62	Freeze tolerance in Aporrectodea caliginosa and other earthworms from Finland. Cryobiology, 2007, 55, 80-86.	0.3	35
63	Effects of temperature and anoxia upon the performance of in situ perfused trout hearts. Journal of Experimental Biology, 2004, 207, 655-665.	0.8	34
64	Hemolymph metabolites and osmolality are tightly linked to cold tolerance of <i>Drosophila</i> species: a comparative study. Journal of Experimental Biology, 2016, 219, 2504-13.	0.8	34
65	No patterns in thermal plasticity along a latitudinal gradient in <i><scp>D</scp>rosophila simulans</i> from eastern Australia. Journal of Evolutionary Biology, 2014, 27, 2541-2553.	0.8	33
66	Inbreeding effects on standard metabolic rate investigated at cold, benign and hot temperatures in Drosophila melanogaster. Journal of Insect Physiology, 2014, 62, 11-20.	0.9	33
67	Laboratory maintenance does not alter ecological and physiological patterns among species: a <i>Drosophila</i> case study. Journal of Evolutionary Biology, 2018, 31, 530-542.	0.8	33
68	Contractile properties of the functionally divided python heart: Two sides of the same matter. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 146, 163-173.	0.8	31
69	Oxygen transport is not compromised at high temperature in pythons. Journal of Experimental Biology, 2014, 217, 3958-61.	0.8	31
70	Preconditioning stimuli do not benefit the myocardium of hypoxia-tolerant rainbow trout () Tj ETQq0 0 0 rgBT /C Environmental Physiology, 2004, 174, 329-340.	verlock 10 0.7	0 Tf 50 147 To 30
71	Extracellular Determinants of Cardiac Contractility in the Cold Anoxic Turtle. Physiological and Biochemical Zoology, 2005, 78, 976-995.	0.6	30
72	Cold tolerance of Drosophila species is tightly linked to epithelial K+ transport capacity of the Malaighian tubulas and rootal pads, Journal of Experimental Biology, 2017, 220, 4261,4269	0.8	30

Malpighian tubules and rectal pads. Journal of Experimental Biology, 2017, 220, 4261-4269. 72

#	Article	IF	CITATIONS
73	Oxygenation properties and isoform diversity of snake hemoglobins. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1178-R1191.	0.9	29
74	Osmoregulatory capacity at low temperature is critical for insect cold tolerance. Current Opinion in Insect Science, 2021, 47, 38-45.	2.2	29
75	Adaptations to overwintering in the earthworm Dendrobaena octaedra: Genetic differences in glucose mobilisation and freeze tolerance. Soil Biology and Biochemistry, 2007, 39, 2640-2650.	4.2	28
76	Correlation of cardiac performance with cellular energetic components in the oxygen-deprived turtle heart. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R756-R768.	0.9	28
77	Force development, energy state and ATP production of cardiac muscle from turtles and trout during normoxia and severe hypoxia. Journal of Experimental Biology, 2004, 207, 1915-1924.	0.8	27
78	Metabolic Changes during Estivation in the Common Earthworm <i>Aporrectodea caliginosa</i> . Physiological and Biochemical Zoology, 2010, 83, 541-550.	0.6	27
79	Metabolomic analysis of the selection response of Drosophila melanogaster to environmental stress: are there links to gene expression and phenotypic traits?. Die Naturwissenschaften, 2013, 100, 417-427.	0.6	27
80	Increased blood oxygen affinity during digestion in the snake <i>Python molurus</i> . Journal of Experimental Biology, 2002, 205, 3327-3334.	0.8	27
81	Slow desiccation improves dehydration tolerance and accumulation of compatible osmolytes in earthworm cocoons (<i>Dendrobaena octaedra</i> Savigny). Journal of Experimental Biology, 2008, 211, 1903-1910.	0.8	26
82	Heat stress is associated with disruption of ion balance in the migratory locust, Locusta migratoria. Journal of Thermal Biology, 2017, 68, 177-185.	1.1	26
83	Effects of anoxia on ATP, water, ion and pH balance in an insect (<i>Locusta migratoria</i>). Journal of Experimental Biology, 2019, 222, .	0.8	26
84	Fluctuating thermal regime preserves physiological homeostasis and reproductive capacity in Drosophila suzukii. Journal of Insect Physiology, 2019, 113, 33-41.	0.9	26
85	Field tests reveal genetic variation for performance at low temperatures in <i>Drosophila melanogaster</i> . Functional Ecology, 2010, 24, 186-195.	1.7	25
86	Dramatic changes in mitochondrial substrate use at critically high temperatures: a comparative study using <i>Drosophila</i> . Journal of Experimental Biology, 2021, 224, .	0.8	25
87	Tropical to subpolar gradient in phospholipid composition suggests adaptive tuning of biological membrane function in drosophilids. Functional Ecology, 2016, 30, 759-768.	1.7	24
88	Metabolic cold adaptation contributes little to the interspecific variation in metabolic rates of 65 species of Drosophilidae. Journal of Insect Physiology, 2017, 98, 309-316.	0.9	24
89	Determining factors for cryoprotectant accumulation in the freezeâ€ŧolerant earthworm, <i>Dendrobaena octaedra</i> . Journal of Experimental Zoology, 2007, 307A, 578-589.	1.2	23
90	Cold acclimation reduces predation rate and reproduction but increases cold- and starvation tolerance in the predatory mite Gaeolaelaps aculeifer Canestrini. Biological Control, 2017, 114, 150-157.	1.4	23

#	Article	IF	CITATIONS
91	Acclimation responses to shortâ€ŧerm temperature treatments during early life stages causes long lasting changes in spontaneous activity of adult <i>Drosophila melanogaster</i> . Physiological Entomology, 2017, 42, 404-411.	0.6	23
92	Reduced L-type Ca2+ current and compromised excitability induce loss of skeletal muscle function during acute cooling in locust. Journal of Experimental Biology, 2016, 219, 2340-8.	0.8	22
93	Physiological correlates of chill susceptibility in Lepidoptera. Journal of Insect Physiology, 2017, 98, 317-326.	0.9	22
94	Paralytic hypo-energetic state facilitates anoxia tolerance despite ionic imbalance in adult <i>Drosophila melanogaster</i> . Journal of Experimental Biology, 2018, 221, .	0.8	22
95	Temperature preference across life stages and acclimation temperatures investigated in four species of Drosophila. Journal of Thermal Biology, 2019, 86, 102428.	1.1	22
96	Neural dysfunction correlates with heat coma and CTmax in <i>Drosophila</i> but does not set the boundaries for heat stress survival. Journal of Experimental Biology, 2020, 223, .	0.8	22
97	Food composition influences metabolism, heart rate and organ growth during digestion in Python regius. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 183, 36-44.	0.8	21
98	Cold tolerance is linked to osmoregulatory function of the hindgut in <i>Locusta migratoria</i> . Journal of Experimental Biology, 2018, 221, .	0.8	21
99	Temperature effects on aerobic scope and cardiac performance of European perch (Perca fluviatilis). Journal of Thermal Biology, 2017, 68, 162-169.	1.1	20
100	Cold acclimation increases depolarization resistance and tolerance in muscle fibers from a chill-susceptible insect, <i>Locusta migratoria</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 319, R439-R447.	0.9	20
101	A Quantitative Genomic Approach for Analysis of Fitness and Stress Related Traits in a <i>Drosophila melanogaster</i> Model Population. International Journal of Genomics, 2016, 2016, 1-11.	0.8	18
102	Seasonal changes in lipid composition and glycogen storage associated with freeze-tolerance of the earthworm, Dendrobaena octaedra. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2009, 179, 569-577.	0.7	17
103	Are commercial stocks of biological control agents genetically depauperate? – A case study on the pirate bug Orius majusculus Reuter. Biological Control, 2018, 127, 31-38.	1.4	16
104	Increased blood oxygen affinity during digestion in the snake Python molurus. Journal of Experimental Biology, 2002, 205, 3327-34.	0.8	16
105	Maintenance of hindgut reabsorption during cold exposure is a key adaptation for <i>Drosophila</i> cold tolerance. Journal of Experimental Biology, 2020, 223, .	0.8	15
106	Trait Associations across Evolutionary Time within a Drosophila Phylogeny: Correlated Selection or Genetic Constraint?. PLoS ONE, 2013, 8, e72072.	1.1	14
107	Roles of carbohydrate reserves for local adaptation to low temperatures in the freeze tolerant oligochaete Enchytraeus albidus. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 167-177.	0.7	13
108	Effect of repeated freeze-thaw cycles on geographically different populations of the freeze tolerant worm <i>Enchytraeus albidus</i> (Oligochaeta). Journal of Experimental Biology, 2014, 217, 3843-52.	0.8	12

#	Article	IF	CITATIONS
109	Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of <i>Drosophila subobscura</i> . Biology Letters, 2016, 12, 20160123.	1.0	12
110	Fitness consequences of artificial diets with different macronutrient composition for the predatory bug Orius majusculus. Entomologia Experimentalis Et Applicata, 2020, 168, 492-501.	0.7	12
111	Acclimation, duration and intensity of cold exposure determine the rate of cold stress accumulation and mortality in Drosophila suzukii. Journal of Insect Physiology, 2021, 135, 104323.	0.9	12
112	Small Dendrobaena earthworms survive freezing better than large worms. Cryobiology, 2007, 54, 298-300.	0.3	11
113	Membrane properties of Enchytraeus albidus originating from contrasting environments: a comparative analysis. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2015, 185, 389-400.	0.7	10
114	Genetic variability and evolution of cold-tolerance. , 0, , 276-296.		9
115	Temperate Drosophila preserve cardiac function at low temperature. Journal of Insect Physiology, 2015, 77, 26-32.	0.9	8
116	Comparison of Static and Dynamic Assays When Quantifying Thermal Plasticity of Drosophilids. Insects, 2020, 11, 537.	1.0	8
117	Using radiotelemetry to study behavioural thermoregulation in insects under field conditions. Methods in Ecology and Evolution, 2019, 10, 1773-1782.	2.2	7
118	Physiological Adaptations to Extreme Maternal and Allomaternal Care in Spiders. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	7
119	Paralysis and heart failure precede ion balance disruption in heat-stressed European green crabs. Journal of Thermal Biology, 2017, 68, 186-194.	1.1	6
120	Increased lipid accumulation but not reduced metabolism explains improved starvation tolerance in cold-acclimated arthropod predators. Die Naturwissenschaften, 2018, 105, 65.	0.6	6
121	Cold acclimation preserves hindgut reabsorption capacity at low temperature in a chill-susceptible insect, Locusta migratoria. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2021, 252, 110850.	0.8	6
122	Quantitative model analysis of the resting membrane potential in insect skeletal muscle: Implications for low temperature tolerance. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2021, 257, 110970.	0.8	6
123	Metabolic Transitions During Feast and Famine in Spiders. , 2012, , 53-68.		5
124	Prey-specific experience affects prey preference and time to kill in the soil predatory mite Gaeolaelaps aculeifer Canestrini. Biological Control, 2019, 139, 104076.	1.4	4
125	Cold acclimation modulates voltage gated Ca2+ channel currents and fiber excitability in skeletal muscles of Locusta migratoria. Journal of Insect Physiology, 2019, 114, 116-124.	0.9	4
126	Cold mortality is not caused by oxygen limitation or loss of ion homeostasis in the tropical freshwater shrimp Macrobrachium rosenbergii. Cryobiology, 2017, 76, 146-149.	0.3	3

#	Article	IF	CITATIONS
127	Introduction to the Special Issue "What sets the limit? How thermal limits, performance and preference in ectotherms are influenced by water or energy balance― Journal of Thermal Biology, 2015, 54, 1-2.	1.1	2
128	DRINK TILL YOU DROP. Journal of Experimental Biology, 2005, 208, vii-vii.	0.8	1
129	The influence of developmental stage on cold shock resistance and ability to cold-harden in Drosophila melanogaster. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 146, S153-S154.	0.8	1
130	Cryoprotectants are metabolic fuels during long term frost exposure in the earthworm Dendrobaena octaedra. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2008, 150, S159.	0.8	1
131	FLIES TOUGHEN UP IN BITS AND PIECES. Journal of Experimental Biology, 2005, 208, vii-viii.	0.8	0
132	KEEPING TRACK OF THE STEPS. Journal of Experimental Biology, 2006, 209, v-v.	0.8	0
133	HEAT UP AND SPEED UP. Journal of Experimental Biology, 2006, 209, vii-vii.	0.8	0
134	GET IN TOUCH AND CALM DOWN. Journal of Experimental Biology, 2006, 209, v-v.	0.8	0
135	WATER CHANNELS DRIVE FREEZE TOLERANCE. Journal of Experimental Biology, 2006, 209, v-vi.	0.8	0
136	Slow dehydration increases desiccation tolerance in Dendrobaena octaedra cocoons. Comparative	0.8	0

Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2007, 146, S155. 36