Lorenzo Codecasa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3760754/publications.pdf

Version: 2024-02-01

279798 377865 2,152 169 23 34 citations h-index g-index papers 169 169 169 662 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Trefftz co-chain calculus. Zeitschrift Fur Angewandte Mathematik Und Physik, 2022, 73, 43.	1.4	O
2	Multilevel Monte Carlo FDTD Method for Uncertainty Quantification. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 2030-2034.	4.0	3
3	Defect Detection in Double-Sided Cooled Power Modules by Structure Functions. , 2022, , .		O
4	Accurate and Efficient Algorithm for Computing Structure Functions From the Spatial Distribution of Thermal Properties in Electronic Devices. IEEE Transactions on Electron Devices, 2021, 68, 5386-5393.	3.0	6
5	Analysis of Electrothermal Effects in Devices and Arrays in InGaP/GaAs HBT Technology. Electronics (Switzerland), 2021, 10, 757.	3.1	15
6	Exact conic section arc elements in 2D and 2.5D FEM using a coordinate transformation. IET Microwaves, Antennas and Propagation, 2021, 15, 1108-1116.	1.4	2
7	Electrothermal Modeling, Simulation, and Electromagnetic Characterization of a 3.3 kV SiC MOSFET Power Module., 2021,,.		2
8	An arbitrary-order Cell Method with block-diagonal mass-matrices for the time-dependent 2D Maxwell equations. Journal of Computational Physics, 2021, 433, 110184.	3.8	3
9	Coupling the Cell Method with the Boundary Element Method in Static and Quasi–Static Electromagnetic Problems. Mathematics, 2021, 9, 1426.	2.2	5
10	Compact Modeling of a 3.3 kV SiC MOSFET Power Module for Detailed Circuit-Level Electrothermal Simulations Including Parasitics. Energies, 2021, 14, 4683.	3.1	21
11	Domain Decomposition With Non-Conforming Polyhedral Grids. IEEE Access, 2021, 9, 1465-1481.	4.2	2
12	Galerkin's Projection Framework for BCI CTMsâ€"Part I: Extended FANTASTIC Approach. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 1792-1803.	2.5	6
13	Compact Electro-Thermal Models for Integrated Systems. , 2021, , .		O
14	Towards the Extension of TRIC for Thermo-Mechanical Analysis. , 2021, , .		2
15	TONIC: TOol for Nonlinear BCI CTMs of Integrated Circuits. , 2021, , .		3
16	A Hybrid <i>a</i> à–φ Cell Method for Solving Eddy–Current Problems in 3–D Multiply–Connected Domains. IEEE Access, 2021, 9, 158247-158260.	4.2	2
17	Circuit-Based Electrothermal Simulation of Multicellular SiC Power MOSFETs Using FANTASTIC. Energies, 2020, 13, 4563.	3.1	17
18	Uncertainty Quantification for SAE J2954 Compliant Static Wireless Charge Components. IEEE Access, 2020, 8, 171489-171501.	4.2	21

#	Article	IF	Citations
19	A Novel h–φ Approach for Solving Eddy–Current Problems in Multiply Connected Regions. IEEE Access, 2020, 8, 170659-170671.	4.2	6
20	TRIC: A Thermal Resistance and Impedance Calculator for Electronic Packages. Energies, 2020, 13, 2252.	3.1	5
21	Exploiting Port Responses for Wideband Analysis of Multimode Lossless Devices. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 555-563.	4.6	10
22	Enforcing Lumped Parameter Excitations in Edge-Element Formulations by Using a Fast Iterative Approach. IEEE Transactions on Magnetics, 2020, 56, 1-4.	2.1	2
23	The Time-Domain Cell Method Is a Coupling of Two Explicit Discontinuous Galerkin Schemes With Continuous Fluxes. IEEE Transactions on Magnetics, 2020, 56, 1-4.	2.1	4
24	Thermal Modeling of BGA Package Families Using the Thermal Resistance and Impedance Calculator (TRIC). , 2020, , .		2
25	An Approach to the Cell-Level Diagnosis of Malfunctioning Events in PV Panels from Aerial Thermal Maps. Lecture Notes in Electrical Engineering, 2020, , 89-102.	0.4	1
26	Altering MOR-based BCI CTMs into Delphi-like BCI CTMs. , 2020, , .		2
27	Shooting by a Two-Step Galerkin Method. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 383-390.	5.4	6
28	Practical Thermal Modeling of Planar Magnetic Component devices., 2019,,.		1
29	Fast Uncertainty Quantification in Low Frequency Electromagnetic Problems by an Integral Equation Method Based on Hierarchical Matrix Compression. IEEE Access, 2019, 7, 163919-163932.	4.2	4
30	A <i>Priori</i> Error Bound for Moment Matching Approximants of Thermal Models. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 2383-2392.	2.5	11
31	A 3-D Hybrid Cell Boundary Element Method for Time-Harmonic Eddy Current Problems on Multiply Connected Domains. IEEE Transactions on Magnetics, 2019, 55, 1-11.	2.1	10
32	TRAC: A Thermal Resistance Advanced Calculator for Electronic Packages. Energies, 2019, 12, 1050.	3.1	9
33	Stochastic PEEC Method Based on Polynomial Chaos Expansion. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	4
34	A face-smoothed cell method for static and dynamic piezoelectric coupled problems on polyhedral meshes. Journal of Computational Physics, 2019, 386, 84-109.	3.8	1
35	Three-Steps Approach to Uncertainty Quantification for Electronic Components and Packages. , 2019, , .		2
36	Algorithm for Establishing the Dependence of Structure Functions on Spatial Distributions of Thermal Properties. , 2019 , , .		2

#	Article	IF	Citations
37	Thermal Resistance and Impedance Calculator (TRIC)., 2019,,.		5
38	Dynamic electro-thermal modeling of solar cells and modules. Solar Energy, 2019, 179, 326-334.	6.1	21
39	Accurate and efficient analysis of the upward heat flow in InGaP/GaAs HBTs through an automated FEMâ€based tool and Design of Experiments. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2019, 32, e2530.	1.9	24
40	Model-Order Reduction Procedure for Fast Dynamic Electrothermal Simulation of Power Converters. Lecture Notes in Electrical Engineering, 2019, , 81-87.	0.4	9
41	On the performance of piezoelectric harvesters loaded by finite width impulses. Mechanical Systems and Signal Processing, 2018, 100, 28-42.	8.0	10
42	Novel Approach to the Extraction of Delphi-like Boundary-Condition-Independent Compact Thermal Models of Planar Transformer Devices. , 2018 , , .		18
43	Modeling Thermal Coupling in Bipolar Power Amplifiers toward Dynamic Electrothermal Simulation. , 2018, , .		15
44	E-Plane Metal-Insert Filters with Pseudo-Elliptic Response. , 2018, , .		2
45	Experimental Characterization of MOR-based and Delphi-like BCI DCTMs. , 2018, , .		12
46	Thermal Resistance Advanced Calculator (TRAC). , 2018, , .		11
47	Versatile MOR-based boundary condition independent compact thermal models with multiple heat sources. Microelectronics Reliability, 2018, 87, 194-205.	1.7	14
48	Combined SPICE-FEM analysis of electrothermal effects in InGaP/GaAs HBT devices and arrays for handset applications. , 2018 , , .		6
49	Novel FDTD Technique Over Tetrahedral Grids for Conductive Media. IEEE Transactions on Antennas and Propagation, 2018, 66, 5387-5396.	5.1	8
50	Multi-port dynamic compact thermal models of dual-chip package using model order reduction and metaheuristic optimization. Microelectronics Reliability, 2018, 87, 222-231.	1.7	20
51	GPU Accelerated Time-Domain Discrete Geometric Approach Method for Maxwell's Equations on Tetrahedral Grids. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	6
52	Fast Nonlinear Dynamic Compact Thermal Modeling With Multiple Heat Sources in Ultra-Thin Chip Stacking Technology. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7, 58-69.	2.5	18
53	Nonlinear model order reduction for the fast solution of induction heating problems in time-domain. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2017, 36, 469-475.	0.9	2
54	A 3-D Hybrid Cell Method for Induction Heating Problems. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	11

#	Article	IF	Citations
55	Uncertainty quantification in transcranial magnetic stimulation with correlation between tissue conductivities. , $2017, \ldots$		2
56	Model order reduction approach to uncertainty quantification in eddy current problems. , 2017, , .		0
57	A Geometric Frequency-Domain Wave Propagation Formulation for Fast Convergence of Iterative Solvers. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	1
58	MOR-Based Approach to Uncertainty Quantification in Electrokinetics With Correlated Random Material Parameters. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	5
59	Uncertainty quantification in linear magnetostatic problems with correlated random reluctivities. International Journal of Applied Electromagnetics and Mechanics, 2017, 55, 177-183.	0.6	1
60	Simulation comparison of InGaP/GaAs HBT thermal performance in wire-bonding and flip-chip technologies. Microelectronics Reliability, 2017, 78, 233-242.	1.7	23
61	Wideband analysis of lossless multimode waveguide junctions. , 2017, , .		2
62	Partition-based approach to parametric dynamic compact thermal modeling. Microelectronics Reliability, 2017, 79, 361-370.	1.7	9
63	3-D thermal models calibration by parametric dynamic compact thermal models. Microelectronics Reliability, 2017, 79, 371-379.	1.7	8
64	Influence of layout and technology parameters on the thermal behavior of InGaP/GaAs HBTs. , 2017, , .		11
65	Stochastic finite integration technique for magnetostatic problems. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2017, 30, e2209.	1.9	3
66	Delphi-like dynamical compact thermal models using model order reduction. , 2017, , .		24
67	Connecting MOR-based boundary condition independent compact thermal models. , 2017, , .		12
68	Novel approach for the extraction of nonlinear compact thermal models., 2017,,.		14
69	On-Line Junction Temperature Monitoring of Switching Devices with Dynamic Compact Thermal Models Extracted with Model Order Reduction. Energies, 2017, 10, 189.	3.1	31
70	Numerical analysis of the thermal behavior sensitivity to technology parameters and operating conditions in InGaP/GaAs HBTs. , 2017, , .		4
71	MOR-Based Uncertainty Quantification in Transcranial Magnetic Stimulation. Modeling, Simulation and Applications, 2017, , 421-437.	1.3	1
72	Geometrically defined basis functions for polyhedral elements with applications to computational electromagnetics. ESAIM: Mathematical Modelling and Numerical Analysis, 2016, 50, 677-698.	1.9	3

#	Article	IF	Citations
73	A geometric frequency-domain wave propagation formulation for fast convergence of iterative solvers. , $2016, , .$		O
74	Modeling of Anechoic Chambers With Equivalent Materials and Equivalent Sources. IEEE Transactions on Electromagnetic Compatibility, 2016, 58, 956-963.	2.2	1
75	A novel finite integration technique model for static and dynamic piezoelectric coupled problems. , 2016, , .		0
76	A 3D hybrid cell method for induction heating problems. , 2016, , .		0
77	Real-time temperature cycling estimation of IGBT power modules with power in-line measurements and compact thermal modeling. , 2016 , , .		0
78	Fast MOR-Based Approach to Uncertainty Quantification in Transcranial Magnetic Stimulation. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	9
79	Harmonic Balance Based on Two-Step Galerkin Method. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 1476-1486.	5.4	6
80	Thermal feedback blocks for fast and reliable electrothermal circuit simulation of power circuits at module level. , $2016, $, .		21
81	Calibration of detailed thermal models by parametric dynamic compact thermal models. , 2016, , .		15
82	Novel partition-based approach to dynamic compact thermal modeling. , 2016, , .		11
83	Advanced thermal simulation of SiGe:C HBTs including back-end-of-line. Microelectronics Reliability, 2016, 67, 38-45.	1.7	19
84	MOR-based approach to uncertainty quantification in electrokinetics with correlated random material parameters. , 2016, , .		0
85	A comparative performance analysis of time-domain formulations for wave propagation problems. , 2016, , .		0
86	Novel MOR approach for extracting dynamic compact thermal models with massive numbers of heat sources. , $2016,$, .		20
87	Corona Discharge Simulation of Multiconductor Electrostatic Precipitators. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	2
88	Fast Solution of Induction Heating Problems by Structure-Preserving Nonlinear Model Order Reduction. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	9
89	Complementary Discrete Geometric <inline-formula> <tex-math notation="LaTeX">\$h\$ </tex-math> </inline-formula> -Field Formulation for Wave Propagation Problems. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	2
90	Indirect Coupling of the Cell Method and BEM for Solving 3-D Unbounded Magnetostatic Problems. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	8

#	Article	IF	CITATIONS
91	Excitation by Scattering/Total Field Decomposition and Uniaxial PML in the Geometric Formulation. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	2
92	Circuit-Based Electrothermal Simulation of Power Devices by an Ultrafast Nonlinear MOR Approach. IEEE Transactions on Power Electronics, 2016, 31, 5906-5916.	7.9	63
93	Structure-preserving approach to multi-port dynamic compact models of nonlinear heat conduction. Microelectronics Journal, 2015, 46, 1129-1137.	2.0	22
94	Complementary Energy Bounds in FIT for Magnetostatics. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	1
95	Novel Approach to Model Order Reduction for Nonlinear Eddy-Current Problems. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	4
96	2-D Stabilized FIT Formulation for Eddy-Current Problems in Moving Conductors. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	4
97	Plane Wave Excitation for Frequency Domain Electromagnetic Problems by Means of Impedance Boundary Condition. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	7
98	Why matrix reduction is better than objective function based optimization in compact thermal model creation. , $2015, , .$		29
99	Structure preserving approach to parametric dynamic compact thermal models of nonlinear heat conduction. , 2015, , .		19
100	Advanced thermal resistance simulation of SiGe HBTs including backend cooling effect., 2015,,.		6
101	Reduction of harmonic balance equations through Galerkin's method., 2015,,.		3
102	Matrix reduction tool for creating boundary condition independent dynamic compact thermal models. , $2015, \ldots$		37
103	Dynamic electrothermal simulation of photovoltaic plants. , 2015, , .		6
104	Stochastic Finite Integration Technique for Eddy-Current Problems. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	7
105	Generalized spectral decomposition approach to a stochastic finite integration technique electrokinetic formulation. , 2014, , .		2
106	Compact Dynamic Modeling for Fast Simulation of Nonlinear Heat Conduction in Ultra-Thin Chip Stacking Technology. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4, 1785-1795.	2.5	32
107	Analysis of the Influence of Layout and Technology Parameters on the Thermal Impedance of GaAs HBT/BiFET Using a Highly-Efficient Tool. , 2014, , .		22
108	Multi-port dynamic compact thermal models of nonlinear heat conduction. , 2014, , .		16

#	Article	IF	Citations
109	Parametric compact thermal models by moment matching for variable geometry. , 2014, , .		21
110	Nonlinear dynamic compact thermal models by structure-preserving projection. Microelectronics Journal, 2014, 45, 1764-1769.	2.0	14
111	Fast novel thermal analysis simulation tool for integrated circuits (FANTASTIC)., 2014, , .		64
112	Refoundation of the Cell Method Using Augmented Dual Grids. IEEE Transactions on Magnetics, 2014, 50, 497-500.	2.1	32
113	Stochastic Finite Integration Technique Formulation for Electrokinetics. IEEE Transactions on Magnetics, 2014, 50, 573-576.	2.1	16
114	A Novel Inversion Technique for Imaging Thrombus Volume in Microchannels Fusing Optical and Impedance Data. IEEE Transactions on Magnetics, 2014, 50, 1021-1024.	2.1	6
115	A FIT Formulation of Bianisotropic Materials Over Polyhedral Grids. IEEE Transactions on Magnetics, 2014, 50, 349-352.	2.1	4
116	Compact electro-thermal models of interconnects. Microelectronics Journal, 2014, 45, 1777-1785.	2.0	15
117	Compact thermal models for stochastic thermal analysis. Microelectronics Journal, 2014, 45, 1770-1776.	2.0	14
118	Novel approach to compact modeling for nonlinear thermal conduction problems. , 2013, , .		22
119	Stochastic thermal modeling by polynomial chaos expansion. , 2013, , .		14
120	Compact electro-thermal models of interconnects. , 2013, , .		14
121	Novel Feedback Theory of Electric Circuits—Part II: Loop Invariants. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59, 1505-1518.	5.4	3
122	Novel Feedback Theory of Electric Circuitsâ€"Part I: Cut-Based Decomposition. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59, 1491-1504.	5.4	11
123	Discrete Geometric Formulation of Admittance Boundary Conditions for Frequency Domain Problems Over Tetrahedral Dual Grids. IEEE Transactions on Antennas and Propagation, 2012, 60, 3998-4002.	5.1	9
124	A nonâ€destructive testing application solved with <i>A</i> â€ <i>χ</i> geometric eddyâ€current formulation. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2010, 29, 1606-1615.	0.9	0
125	A new set of basis functions for the discrete geometric approach. Journal of Computational Physics, 2010, 229, 7401-7410.	3.8	61
126	Constitutive Relations for Discrete Geometric Approach Over Hexahedral Grids. IEEE Transactions on Magnetics, 2010, 46, 3077-3080.	2.1	3

#	Article	IF	Citations
127	A Perturbation Method for the \$T-Omega\$ Geometric Eddy-Current Formulation. IEEE Transactions on Magnetics, 2010, 46, 3045-3048.	2.1	3
128	Time-Domain Geometric Eddy-Current \$A\$ Formulation for Hexahedral Grids. IEEE Transactions on Magnetics, 2010, 46, 3301-3304.	2.1	3
129	A geometric integral formulation for eddy urrents. International Journal for Numerical Methods in Engineering, 2010, 82, 1720-1736.	2.8	7
130	The discrete geometric approach for wave propagation problems. , 2009, , .		2
131	Subgridding to Solving Magnetostatics Within Discrete Geometric Approach. IEEE Transactions on Magnetics, 2009, 45, 1024-1027.	2.1	3
132	Evaluating the effects of temperature gradients and currents nonuniformity in on-chip interconnects. Microelectronics Journal, 2009, 40, 1154-1159.	2.0	6
133	Base functions and discrete constitutive relations for staggered polyhedral grids. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 1117-1123.	6.6	26
134	Modeling and Simulation of a Hybrid Photovoltaic Module Equipped With a Heat-Recovery System. IEEE Transactions on Industrial Electronics, 2009, 56, 4311-4318.	7.9	31
135	Explicit, Consistent, and Conditionally Stable Extension of FD-TD to Tetrahedral Grids by FIT. IEEE Transactions on Magnetics, 2008, 44, 1258-1261.	2.1	31
136	Semi-implicit integration method for the time-domain simulation of thermal responses. , 2008, , .		0
137	Multi-physics analysis of a photovoltaic panel with a heat recovery system. , 2008, , .		3
138	Steady-state analysis of strongly nonlinear Oscillators By Means of Runge-Kutta Methods. , 2008, , .		1
139	Triangulation method for structure functions of multi-directional heat-flows. , 2008, , .		4
140	Compact thermal networks for conjugate heat transfer by moment matching. , 2008, , .		16
141	Closed-Form expression of frequency pulling in unlocked-driven nonlinear oscillators., 2007,,.		3
142	Time-Domain Simulation of Nonlinear Circuits Through Implicit Runge–Kutta Methods. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2007, 54, 391-400.	0.1	36
143	Compact Models of Dynamic Thermal Networks with Many Heat Sources. IEEE Transactions on Components and Packaging Technologies, 2007, 30, 653-659.	1.3	47
144	Symmetric Positive-Definite Constitutive Matrices for Discrete Eddy-Current Problems. IEEE Transactions on Magnetics, 2007, 43, 510-515.	2.1	41

#	Article	IF	CITATIONS
145	Structure Function Representation of Multidirectional Heat-Flows. IEEE Transactions on Components and Packaging Technologies, 2007, 30, 643-652.	1.3	14
146	Constitutive equations for discrete electromagnetic problems over polyhedral grids. Journal of Computational Physics, 2007, 225, 1894-1918.	3.8	25
147	Event-Driven Time-Domain Simulation of Closed-Loop Switched Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2006, 25, 2413-2426.	2.7	12
148	Piecewise uniform bases and energetic approach for discrete constitutive matrices in electromagnetic problems. International Journal for Numerical Methods in Engineering, 2006, 65, 548-565.	2.8	29
149	Multipoint moment matching reduction from port responses of dynamic thermal networks. IEEE Transactions on Components and Packaging Technologies, 2005, 28, 605-614.	1.3	38
150	A novel approach for generating boundary condition independent compact dynamic thermal networks of packages. IEEE Transactions on Components and Packaging Technologies, 2005, 28, 593-604.	1.3	51
151	Canonical forms of one-port Passive Distributed thermal networks. IEEE Transactions on Components and Packaging Technologies, 2005, 28, 5-13.	1.3	31
152	Thermal networks from heat wave equation. IEEE Transactions on Components and Packaging Technologies, 2005, 28, 14-22.	1.3	23
153	Electro-thermal chaotic oscillations of paralleled bipolar transistors. Microelectronics Journal, 2004, 35, 859-868.	2.0	5
154	Compact Thermal Networks for Modeling Packages. IEEE Transactions on Components and Packaging Technologies, 2004, 27, 96-103.	1.3	46
155	Analytical Multipoint Moment Matching Reduction of Distributed Thermal Networks. IEEE Transactions on Components and Packaging Technologies, 2004, 27, 87-95.	1.3	33
156	Use of Barycentric Dual Grids for the Solution of Frequency Domain Problems by FIT. IEEE Transactions on Magnetics, 2004, 40, 1414-1419.	2.1	32
157	Compact modeling of electrical devices for electrothermal analysis. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2003, 50, 465-476.	0.1	76
158	An arnoldi based thermal network reduction method for electro-thermal analysis. IEEE Transactions on Components and Packaging Technologies, 2003, 26, 186-192.	1.3	82
159	Accurate electro-thermal model of avalanching junctions subject to ESD currents. Electronics Letters, 2003, 39, 932.	1.0	6
160	Modeling the thermal response of semiconductor devices through equivalent electrical networks. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2002, 49, 1187-1197.	0.1	29
161	Full Wave Derivation of Equivalent Circuit for Waveguide Dielectric Resonator Filter. , 2001, , .		0
162	Thermal networks for electro-thermal analysis of power devices. Microelectronics Journal, 2001, 32, 817-822.	2.0	12

#	Article	IF	CITATIONS
163	Electro-thermal resonance in MOSFET devices. Electronics Letters, 2001, 37, 57.	1.0	6
164	Solution of Boundary-Value Problems in Frequency Domain by a Dual Grid Second-Order FD Technique. , 2000, , .		1
165	Physical interpretation and numerical approximation of structure functions of components and packages. , 0, , .		10
166	Multivariate moment matching for generating boundary condition independent compact dynamic thermal networks of packages. , 0 , , .		13
167	Boundary condition independent compact models of dynamic thermal networks with many heat sources. , 0, , .		11
168	Parametric Compact Models by Directional Moment Matching. , 0, , .		5
169	An Efficient Simulation Methodology to Quantify the Impact of Parameter Fluctuations on the Electrothermal Behavior of Multichip SiC Power Modules. Materials Science Forum, 0, 963, 855-858.	0.3	13