Purna C Kashyap, Mbbs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3760689/publications.pdf

Version: 2024-02-01

81 papers 7,638 citations

39 h-index

81839

72 g-index

85 all docs 85 docs citations

85 times ranked

10777 citing authors

#	Article	IF	CITATIONS
1	The promise of the gut microbiome as part of individualized treatment strategies. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 7-25.	8.2	60
2	Oxidative ornithine metabolism supports non-inflammatory C. difficile colonization. Nature Metabolism, 2022, 4, 19-28.	5.1	28
3	Dynamics of plasmid-mediated niche invasion, immunity to invasion, and pheromone-inducible conjugation in the murine gastrointestinal tract. Nature Communications, 2022, 13, 1377.	5.8	4
4	Gut microbial \hat{l}^2 -glucuronidases regulate host luminal proteases and are depleted in irritable bowel syndrome. Nature Microbiology, 2022, 7, 680-694.	5.9	26
5	Potential Role of Inflammation-Promoting Biliary Microbiome in Primary Sclerosing Cholangitis and Cholangiocarcinoma. Cancers, 2022, 14, 2120.	1.7	10
6	Bacteriaâ€Derived Hypoxanthine Accelerates Gastrointestinal Transit. FASEB Journal, 2022, 36, .	0.2	1
7	Identification of shared and disease-specific host gene–microbiome associations across human diseases using multi-omic integration. Nature Microbiology, 2022, 7, 780-795.	5.9	57
8	Microbially derived polyunsaturated fatty acid as a modulator of gastrointestinal motility. Journal of Clinical Investigation, 2022, 132, .	3.9	3
9	SSAT State-of-the-Art Conference: Advancements in the Microbiome. Journal of Gastrointestinal Surgery, 2021, 25, 1885-1895.	0.9	1
10	<i>Clostridioides difficile</i> Whole-genome Sequencing Differentiates Relapse With the Same Strain From Reinfection With a New Strain. Clinical Infectious Diseases, 2021, 72, 806-813.	2.9	24
11	Plasmid Acquisition Alters Vancomycin Susceptibility in Clostridioides difficile. Gastroenterology, 2021, 160, 941-945.e8.	0.6	17
12	Functional Gastrointestinal Disorders and the Microbiomeâ€"What Is the Best Strategy for Moving Microbiome-based Therapies for Functional Gastrointestinal Disorders into the Clinic?. Gastroenterology, 2021, 160, 538-555.	0.6	29
13	Berberine alters gut microbial function through modulation of bile acids. BMC Microbiology, 2021, 21, 24.	1.3	13
14	Role of gut microbiota in regulating gastrointestinal dysfunction and motor symptoms in a mouse model of Parkinson's disease. Gut Microbes, 2021, 13, 1866974.	4.3	61
15	The role of microbiome in pancreatic cancer. Cancer and Metastasis Reviews, 2021, 40, 777-789.	2.7	27
16	Multi-Omics Analyses Show Disease, Diet, and Transcriptome Interactions With the Virome. Gastroenterology, 2021, 161, 1194-1207.e8.	0.6	28
17	The â€~ <i>in vivo</i> lifestyle' of bile acid 7α-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic mice. Gut Microbes, 2020, 11, 381-404.	4.3	80
18	Serine proteases as luminal mediators of intestinal barrier dysfunction and symptom severity in IBS. Gut, 2020, 69, 62-73.	6.1	57

#	Article	IF	Citations
19	Longitudinal Multi-omics Reveals Subset-Specific Mechanisms Underlying Irritable Bowel Syndrome. Cell, 2020, 182, 1460-1473.e17.	13.5	217
20	A Potential Role for Stress-Induced Microbial Alterations in IgA-Associated Irritable Bowel Syndrome with Diarrhea. Cell Reports Medicine, 2020, 1, 100124.	3.3	24
21	A Diet for Healthy Weight: Why Reaching a Consensus Seems Difficult. Nutrients, 2020, 12, 2997.	1.7	1
22	Spotlight: Probiotics Guidelines. Gastroenterology, 2020, 159, 707.	0.6	3
23	Bacterially Derived Tryptamine Increases Mucus Release by Activating a Host Receptor in a Mouse Model of Inflammatory Bowel Disease. IScience, 2020, 23, 101798.	1.9	29
24	Microbiota on biotics: probiotics, prebiotics, and synbiotics to optimize growth and metabolism. American Journal of Physiology - Renal Physiology, 2020, 319, G382-G390.	1.6	26
25	Parkinson's disease: Are gut microbes involved?. American Journal of Physiology - Renal Physiology, 2020, 319, G529-G540.	1.6	7
26	Wild primate microbiomes prevent weight gain in germ-free mice. Animal Microbiome, 2020, 2, 16.	1.5	7
27	Probiotics Reduce Mortality and Morbidity in Preterm, Low-Birth-Weight Infants: A Systematic Review and Network Meta-analysis of Randomized Trials. Gastroenterology, 2020, 159, 467-480.	0.6	128
28	AGA Technical Review on the Role of Probiotics in the Management of Gastrointestinal Disorders. Gastroenterology, 2020, 159, 708-738.e4.	0.6	71
29	Highâ€fat diet–induced alterations to gut microbiota and gutâ€derived lipoteichoic acid contributes to the development of enteric neuropathy. Neurogastroenterology and Motility, 2020, 32, e13838.	1.6	19
30	Impact of air quality on the gastrointestinal microbiome: A review. Environmental Research, 2020, 186, 109485.	3.7	24
31	A decreased abundance of clostridia characterizes the gut microbiota in eosinophilic esophagitis. Physiological Reports, 2019, 7, e14261.	0.7	27
32	Model of personalized postprandial glycemic response to food developed for an Israeli cohort predicts responses in Midwestern American individuals. American Journal of Clinical Nutrition, 2019, 110, 63-75.	2.2	56
33	Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nature Communications, 2019, 10, 2012.	5.8	168
34	Assessment of a Personalized Approach to Predicting Postprandial Glycemic Responses to Food Among Individuals Without Diabetes. JAMA Network Open, 2019, 2, e188102.	2.8	138
35	An Increased Abundance of Clostridiaceae Characterizes Arthritis in Inflammatory Bowel Disease and Rheumatoid Arthritis: A Cross-sectional Study. Inflammatory Bowel Diseases, 2019, 25, 902-913.	0.9	72
36	The Gut Microbiome in Adult and Pediatric Functional Gastrointestinal Disorders. Clinical Gastroenterology and Hepatology, 2019, 17, 256-274.	2.4	119

#	Article	IF	CITATIONS
37	Effects of Transplanting an Exercised or Sedentary Microbiota into Gnotobiotic Mice on Global Gene Expression in Gut, Muscle, and Brain Tissue. FASEB Journal, 2019, 33, lb293.	0.2	O
38	Increased Prevalence of Rare Sucrase-isomaltase PathogenicÂVariants in Irritable Bowel Syndrome Patients. Clinical Gastroenterology and Hepatology, 2018, 16, 1673-1676.	2.4	64
39	<i>Enterococcus faecalis</i> Sex Pheromone cCF10 Enhances Conjugative Plasmid Transfer <i>In Vivo</i> . MBio, 2018, 9, .	1.8	45
40	Therapeutic implications of the gastrointestinal microbiome. Current Opinion in Pharmacology, 2018, 38, 90-96.	1.7	13
41	Metabolites and microbial composition of stool of women with fecal incontinence: Study design and methods. Neurourology and Urodynamics, 2018, 37, 634-641.	0.8	2
42	$$ $$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$	5.8	128
43	US Immigration Westernizes the Human Gut Microbiome. Cell, 2018, 175, 962-972.e10.	13.5	511
44	Diet Effects on Gut Microbiome Composition, Function, and Host Physiology. , 2018, , 755-766.		1
45	Sex differences in NSAIDâ€induced perturbation of human intestinal barrier function and microbiota. FASEB Journal, 2018, 32, 6615-6625.	0.2	39
46	Gut Microbial Carbohydrate Metabolism Hinders Weight Loss in Overweight Adults Undergoing Lifestyle Intervention With a Volumetric Diet. Mayo Clinic Proceedings, 2018, 93, 1104-1110.	1.4	64
47	Gut Microbiota-Produced Tryptamine Activates an Epithelial G-Protein-Coupled Receptor to Increase Colonic Secretion. Cell Host and Microbe, 2018, 23, 775-785.e5.	5.1	268
48	Screening for Clostridium difficile colonization on admission to a hematopoietic stem cell transplant unit may reduce hospital-acquired C difficile infection. American Journal of Infection Control, 2018, 46, 459-461.	1.1	18
49	Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT ₃ receptor expression via acetate production. American Journal of Physiology - Renal Physiology, 2017, 313, G80-G87.	1.6	67
50	Changes in microbial ecology after fecal microbiota transplantation for recurrent C. difficile infection affected by underlying inflammatory bowel disease. Microbiome, 2017, 5, 55.	4.9	118
51	Irritable bowel syndrome: a gut microbiota-related disorder?. American Journal of Physiology - Renal Physiology, 2017, 312, G52-G62.	1.6	198
52	Mutual reinforcement of pathophysiological hostâ€microbe interactions in intestinal stasis models. Physiological Reports, 2017, 5, e13182.	0.7	55
53	<i>Enterococcus faecalis</i> readily colonizes the entire gastrointestinal tract and forms biofilms in a germ-free mouse model. Virulence, 2017, 8, 282-296.	1.8	55
54	Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. Journal of Physiology, 2017, 595, 79-91.	1.3	121

#	Article	IF	CITATIONS
55	Microbiome at the Frontier of Personalized Medicine. Mayo Clinic Proceedings, 2017, 92, 1855-1864.	1.4	138
56	Tune into the rhythm of your bugs. Science Translational Medicine, 2017, 9, .	5 . 8	0
57	Beware! Are bacteria raising your oxidative stress?. Science Translational Medicine, 2017, 9, .	5.8	O
58	Intrinsic Gastrointestinal Macrophages: Their Phenotype and Role in Gastrointestinal Motility. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 120-130.e1.	2.3	57
59	Germ-Free Mice Model for Studying Host–Microbial Interactions. Methods in Molecular Biology, 2016, 1438, 123-135.	0.4	51
60	Agaro-oligosaccharides: a new frontier in the fight against colon cancer?. American Journal of Physiology - Renal Physiology, 2016, 310, G335-G336.	1.6	24
61	Altered gut microbiota in female mice with persistent low body weights following removal of post-weaning chronic dietary restriction. Genome Medicine, 2016, 8, 103.	3.6	20
62	Gut microbiome predictors of treatment response and recurrence in primary $\langle i \rangle$ Clostridium difficile $\langle i \rangle$ infection. Alimentary Pharmacology and Therapeutics, 2016, 44, 715-727.	1.9	94
63	Gut Microbiota: Modulation of Host Physiology in Obesity. Physiology, 2016, 31, 327-335.	1.6	48
64	Individualized Responses of Gut Microbiota to Dietary Intervention Modeled in Humanized Mice. MSystems, 2016, 1, .	1.7	45
65	Bugs clogging your arteries? Take an anti-B2 shot. Science Translational Medicine, 2016, 8, 366ec187.	5.8	1
66	Microbes make the cancer. Science Translational Medicine, 2016, 8, .	5.8	0
67	l'll have a turkey and cheese sandwich. Science Translational Medicine, 2016, 8, .	5.8	O
68	Keep it moving. Science Translational Medicine, 2016, 8, .	5.8	0
69	Blow the germs away. Science Translational Medicine, 2016, 8, .	5.8	O
70	Don't mix zinc lozenges and antibiotics. Science Translational Medicine, 2016, 8, .	5.8	0
71	Update on Fecal Microbiota Transplantation 2015: Indications, Methodologies, Mechanisms, and Outlook. Gastroenterology, 2015, 149, 223-237.	0.6	460
72	Gut microbes promote colonic serotonin production through an effect of short hain fatty acids on enterochromaffin cells. FASEB Journal, 2015, 29, 1395-1403.	0.2	876

#	Article	IF	CITATIONS
73	Eat Your Curry. Cell Host and Microbe, 2015, 18, 385-387.	5.1	2
74	Reprograming of gut microbiome energy metabolism by the <i>FUT2</i> Crohn's disease risk polymorphism. ISME Journal, 2014, 8, 2193-2206.	4.4	182
75	Discovery and Characterization of Gut Microbiota Decarboxylases that Can Produce the Neurotransmitter Tryptamine. Cell Host and Microbe, 2014, 16, 495-503.	5.1	473
76	Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature, 2013, 502, 96-99.	13.7	848
77	Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17059-17064.	3.3	237
78	Role of diet and gut microbiota in management of inflammatory bowel disease in an Asian migrant. Journal of Allergy and Clinical Immunology, 2013, 132, 250-250.e5.	1.5	7
79	Complex Interactions Among Diet, Gastrointestinal Transit, and Gut Microbiota in Humanized Mice. Gastroenterology, 2013, 144, 967-977.	0.6	387
80	Beyond phylotyping: understanding the impact of gut microbiota on host biology. Neurogastroenterology and Motility, 2013, 25, 358-372.	1.6	48
81	Diabetic gastroparesis: what we have learned and had to unlearn in the past 5â€years: Figure 1. Gut, 2010, 59, 1716-1726.	6.1	160