Alexandra Carvalho

List of Publications by Citations

Source: https://exaly.com/author-pdf/3760663/alexandra-carvalho-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

102 papers **11,765** citations

40 h-index 105 g-index

105 ext. papers

13,699 ext. citations

7.2 avg, IF

6.89 L-index

#	Paper	IF	Citations
102	2D materials and van der Waals heterostructures. <i>Science</i> , 2016 , 353, aac9439	33.3	3469
101	Strain-induced gap modification in black phosphorus. <i>Physical Review Letters</i> , 2014 , 112, 176801	7.4	1113
100	Phosphorene: from theory to applications. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	571
99	Tunable optical properties of multilayer black phosphorus thin films. <i>Physical Review B</i> , 2014 , 90,	3.3	496
98	Oxygen defects in phosphorene. <i>Physical Review Letters</i> , 2015 , 114, 046801	7.4	432
97	Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. <i>Nature Communications</i> , 2015 , 6, 6647	17.4	394
96	Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. <i>Nano Letters</i> , 2013 , 13, 5627-34	4 11.5	365
95	Spin-orbit proximity effect in graphene. <i>Nature Communications</i> , 2014 , 5, 4875	17.4	321
94	Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. <i>Physical Review B</i> , 2015 , 92,	3.3	301
93	Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. <i>Nature Communications</i> , 2014 , 5, 4543	17.4	294
92	Creating a Stable Oxide at the Surface of Black Phosphorus. <i>ACS Applied Materials & Discourse and Company and Com</i>	9.5	258
91	Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. <i>Physical Review B</i> , 2013 , 88,	3.3	207
90	Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus. ACS Nano, 2015, 9, 8070-7	16.7	175
89	Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms. <i>Nano Letters</i> , 2016 , 16, 2145-51	11.5	165
88	Phosphorene oxides: Bandgap engineering of phosphorene by oxidation. <i>Physical Review B</i> , 2015 , 91,	3.3	158
87	Atomic healing of defects in transition metal dichalcogenides. <i>Nano Letters</i> , 2015 , 15, 3524-32	11.5	147
86	Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures. <i>Nano Letters</i> , 2016 , 16, 4087-93	11.5	145

(2016-2015)

Enhanced piezoelectricity and modified dielectric screening of two-dimensional group-IV monochalcogenides. <i>Physical Review B</i> , 2015 , 92,	3.3	135
Multiferroic Two-Dimensional Materials. <i>Physical Review Letters</i> , 2016 , 116, 206803	7.4	127
Phosphorene nanoribbons. <i>Europhysics Letters</i> , 2014 , 108, 47005	1.6	118
Atomically thin dilute magnetism in Co-doped phosphorene. <i>Physical Review B</i> , 2015 , 91,	3.3	109
Excitons in anisotropic two-dimensional semiconducting crystals. <i>Physical Review B</i> , 2014 , 90,	3.3	108
Polarization and valley switching in monolayer group-IV monochalcogenides. <i>Physical Review B</i> , 2016 , 94,	3.3	107
Gate-Tunable Giant Stark Effect in Few-Layer Black Phosphorus. <i>Nano Letters</i> , 2017 , 17, 1970-1977	11.5	106
Bandgap Engineering of Phosphorene by Laser Oxidation toward Functional 2D Materials. <i>ACS Nano</i> , 2015 , 9, 10411-21	16.7	102
Surface Functionalization of Black Phosphorus via Potassium toward High-Performance Complementary Devices. <i>Nano Letters</i> , 2017 , 17, 4122-4129	11.5	99
Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers. <i>Nature Communications</i> , 2016 , 7, 13278	17.4	96
A hybrid density functional study of lithium in ZnO: Stability, ionization levels, and diffusion. <i>Physical Review B</i> , 2009 , 80,	3.3	92
Light-Matter Interactions in Phosphorene. Accounts of Chemical Research, 2016, 49, 1806-15	24.3	89
Valley physics in tin (II) sulfide. <i>Physical Review B</i> , 2016 , 93,	3.3	88
Hybrid Bilayer WSe2 -CH3 NH3 PbI3 Organolead Halide Perovskite as a High-Performance Photodetector. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11945-9	16.4	71
Fluorescence Concentric Triangles: A Case of Chemical Heterogeneity in WS2 Atomic Monolayer. <i>Nano Letters</i> , 2016 , 16, 5559-67	11.5	70
Vacancies and oxidation of two-dimensional group-IV monochalcogenides. <i>Physical Review B</i> , 2016 , 94,	3.3	61
Cation-site intrinsic defects in Zn-doped CdTe. <i>Physical Review B</i> , 2010 , 81,	3.3	60
Strongly bound Mott-Wannier excitons in GeS and GeSe monolayers. <i>Physical Review B</i> , 2016 , 94,	3.3	59
	monochalcogenides. <i>Physical Review B</i> , 2015 , 92, Multiferroic Two-Dimensional Materials. <i>Physical Review Letters</i> , 2016 , 116, 206803 Phosphorene nanoribbons. <i>Europhysics Letters</i> , 2014 , 108, 47005 Atomically thin dilute magnetism in Co-doped phosphorene. <i>Physical Review B</i> , 2015 , 91, Excitons in anisotropic two-dimensional semiconducting crystals. <i>Physical Review B</i> , 2014 , 90, Polarization and valley switching in monolayer group-IV monochalcogenides. <i>Physical Review B</i> , 2016 , 94. Gate-Tunable Giant Stark Effect in Few-Layer Black Phosphorus. <i>Nano Letters</i> , 2017 , 17, 1970-1977 Bandgap Engineering of Phosphorene by Laser Oxidation toward Functional 2D Materials. <i>ACS Nano</i> , 2015 , 9, 10411-21 Surface Functionalization of Black Phosphorus via Potassium toward High-Performance Complementary Devices. <i>Nano Letters</i> , 2017 , 17, 4122-4129 Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers. <i>Nature Communications</i> , 2016 , 7, 13278 A hybrid density functional study of lithium in ZnO: Stability, ionization levels, and diffusion. <i>Physical Review B</i> , 2009 , 80, Light-Matter Interactions in Phosphorene. <i>Accounts of Chemical Research</i> , 2016 , 49, 1806-15 Valley physics in tin (II) sulfide. <i>Physical Review B</i> , 2016 , 93, Hybrid Bilayer WSe2 -CH3 NH3 Pbl3 Organolead Halide Perovskite as a High-Performance Photodetector. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11945-9 Fluorescence Concentric Triangles: A Case of Chemical Heterogeneity in WS2 Atomic Monolayer. <i>Nano Letters</i> , 2016 , 16, 5559-67 Vacancies and oxidation of two-dimensional group-IV monochalcogenides. <i>Physical Review B</i> , 2016 , 94,	Multiferroic Two-Dimensional Materials. Physical Review Letters, 2016, 116, 206803 74 Phosphorene nanoribbons. Europhysics Letters, 2014, 108, 47005 1.6 Atomically thin dilute magnetism in Co-doped phosphorene. Physical Review B, 2015, 91, 33 Excitons in anisotropic two-dimensional semiconducting crystals. Physical Review B, 2014, 90, 33 Polarization and valley switching in monolayer group-IV monochalcogenides. Physical Review B, 2014, 90, 33 Gate-Tunable Giant Stark Effect in Few-Layer Black Phosphorus. Nano Letters, 2017, 17, 1970-1977 11.5 Bandgap Engineering of Phosphorene by Laser Oxidation toward Functional 2D Materials. ACS Nano, 2015, 9, 10411-21 Surface Functionalization of Black Phosphorus via Potassium toward High-Performance Complementary Devices. Nano Letters, 2017, 17, 4122-4129 Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers. Nature Communications, 2016, 7, 13278 174 A hybrid density functional study of lithium in ZnO: Stability, ionization levels, and diffusion. Physical Review B, 2009, 80, Light-Matter Interactions in Phosphorene. Accounts of Chemical Research, 2016, 49, 1806-15 Valley physics in tin (II) sulfide. Physical Review B, 2016, 93, 105 Valley physics in tin (II) sulfide. Physical Review B, 2016, 93, 11-5 Valley physics in tin (II) sulfide. Physical Review B, 2016, 93, 11-5 Vacancies and oxidation of two-dimensional group-IV monochalcogenides. Physical Review B, 2016, 94, 94, 10-15 Vacancies and oxidation of two-dimensional group-IV monochalcogenides. Physical Review B, 2016, 94, 94, 10-15

67	Accessing valley degree of freedom in bulk Tin(II) sulfide at room temperature. <i>Nature Communications</i> , 2018 , 9, 1455	17.4	46
66	Exciton binding energies and luminescence of phosphorene under pressure. <i>Physical Review B</i> , 2015 , 91,	3.3	41
65	Hybrid Bilayer WSe2ITH3NH3PbI3 Organolead Halide Perovskite as a High-Performance Photodetector. <i>Angewandte Chemie</i> , 2016 , 128, 12124-12128	3.6	41
64	The oxygen dimer in Si: Its relationship to the light-induced degradation of Si solar cells?. <i>Applied Physics Letters</i> , 2011 , 98, 182101	3.4	41
63	Oxygen induced strong mobility modulation in few-layer black phosphorus. 2D Materials, 2017, 4, 0210	03 .9	40
62	Oxygen Passivation Mediated Tunability of Trion and Excitons in MoS_{2}. <i>Physical Review Letters</i> , 2017 , 119, 077402	7.4	40
61	Self-interstitial in germanium. <i>Physical Review Letters</i> , 2007 , 99, 175502	7.4	39
60	Defects and oxidation resilience in InSe. <i>Physical Review B</i> , 2017 , 96,	3.3	36
59	Enhanced Photoresponse from Phosphorene-Phosphorene-Suboxide Junction Fashioned by Focused Laser Micromachining. <i>Advanced Materials</i> , 2016 , 28, 4090-6	24	35
58	Tunable van Hove singularities and correlated states in twisted monolayerBilayer graphene. <i>Nature Physics</i> , 2021 , 17, 619-626	16.2	33
57	Microsteganography on WS Monolayers Tailored by Direct Laser Painting. ACS Nano, 2017, 11, 713-720	16.7	31
56	Two-dimensional exciton properties in monolayer semiconducting phosphorus allotropes. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 27829-27836	3.6	31
55	Donor and acceptor levels in semiconducting transition-metal dichalcogenides. <i>Physical Review B</i> , 2014 , 89,	3.3	31
54	Four-copper complexes in Si and the Cu-photoluminescence defect: A first-principles study. <i>Physical Review B</i> , 2011 , 84,	3.3	30
53	Density-functional study of small interstitial clusters in Si: Comparison with experiments. <i>Physical Review B</i> , 2005 , 72,	3.3	30
52	The Role of Oxygen Atoms on Excitons at the Edges of Monolayer WS. <i>Nano Letters</i> , 2019 , 19, 4641-465	Q 1.5	28
51	Resolving the Spatial Structures of Bound Hole States in Black Phosphorus. <i>Nano Letters</i> , 2017 , 17, 693	5 -16195 10	27
50	Tin-vacancy complex in germanium. <i>Journal of Applied Physics</i> , 2011 , 109, 083705	2.5	23

49	Two-dimensional square buckled Rashba lead chalcogenides. <i>Physical Review B</i> , 2017 , 96,	3.3	22
48	First-principles investigation of a bistable boron-oxygen interstitial pair in Si. <i>Physical Review B</i> , 2006 , 73,	3.3	20
47	Calculation of deep carrier traps in a divacancy in germanium crystals. <i>Applied Physics Letters</i> , 2006 , 88, 091919	3.4	20
46	Dual phases of crystalline and electronic structures in the nanocrystalline perovskite CsPbBr3. <i>NPG Asia Materials</i> , 2019 , 11,	10.3	20
45	Effect of Oxidation on the Doping of Silicon Nanocrystals with Group III and Group V Elements. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 8243-8250	3.8	19
44	P-doping of Si nanoparticles: The effect of oxidation. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2012 , 209, 1847-1850	1.6	19
43	Electronic properties, doping, and defects in chlorinated silicon nanocrystals. <i>Physical Review B</i> , 2012 , 86,	3.3	18
42	Early stage donor-vacancy clusters in germanium. <i>Journal of Materials Science: Materials in Electronics</i> , 2007 , 18, 769-773	2.1	18
41	Structure Determination and Compositional Modification of Body-Centered Tetragonal PX-Phase Lead Titanate. <i>Chemistry of Materials</i> , 2011 , 23, 2529-2535	9.6	17
40	The self-interstitial in silicon and germanium. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2009 , 159-160, 112-116	3.1	17
39	Silicon and germanium nanocrystals: properties and characterization. <i>Beilstein Journal of Nanotechnology</i> , 2014 , 5, 1787-94	3	14
38	Influence of Ge content on the optical properties of X and W centers in dilute Si-Ge alloys. <i>Physical Review B</i> , 2011 , 84,	3.3	14
37	Adsorption of H, O, HO, OH and H on monolayer MoS. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 035003	1.8	12
36	Li-related defects in ZnO: Hybrid functional calculations. <i>Physica B: Condensed Matter</i> , 2009 , 404, 4797-	47299	11
35	Electronic structure modification of Si nanocrystals with F4-TCNQ. <i>Physical Review B</i> , 2011 , 84,	3.3	11
34	Light induced degradation in B doped Cz-Si solar cells. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2012 , 209, 1894-1897	1.6	10
33	Intrinsic defect complexes in CdTe and ZnTe. <i>Thin Solid Films</i> , 2011 , 519, 7468-7471	2.2	10
32	Intrinsic defects in CdTe and CdZnTe alloys. <i>Physica B: Condensed Matter</i> , 2009 , 404, 5019-5021	2.8	10

31	Collective excitations in 2D materials. <i>Nature Reviews Physics</i> , 2020 , 2, 524-537	23.6	10
30	First-principles study of Fe and FeAl defects in SiGe alloys. <i>Physical Review B</i> , 2008 , 78,	3.3	9
29	Strong compensation of n-type Ge via formation of donor lacancy complexes. <i>Physica B: Condensed Matter</i> , 2007 , 401-402, 179-183	2.8	9
28	Local-density-functional calculations of the vacancy-oxygen center in Ge. <i>Physical Review B</i> , 2007 , 75,	3.3	9
27	Ab initiocalculation of the local vibrational modes of the interstitial boron[hterstitial oxygen defect in Si. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, L155-L159	1.8	9
26	Adsorbate-localized states at water-covered (100) SrTiO3 surfaces. <i>Applied Physics Letters</i> , 2011 , 98, 012106	3.4	8
25	Boron doped Si nanoparticles: the effect of oxidation. <i>Physica Status Solidi (B): Basic Research</i> , 2013 , 250, 1799-1803	1.3	7
24	Ab initio modeling of defect levels in Ge clusters and supercells. <i>Materials Science in Semiconductor Processing</i> , 2006 , 9, 477-483	4.3	7
23	Identification of the local vibrational modes of small nitrogen clusters in dilute GaAsN. <i>Physica B: Condensed Matter</i> , 2007 , 401-402, 339-342	2.8	6
22	Electronic and optical properties of low-dimensional group-IV monochalcogenides. <i>Journal of Applied Physics</i> , 2020 , 128, 121101	2.5	6
21	Charge Injection Rates in Hybrid Nanosilicon Polythiophene Bulk Heterojunction Solar Cells. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 110-115	3.8	5
20	Limits to N-Type Doping in Ge: Formation of Donor-Vacancy Complexes. <i>Defect and Diffusion Forum</i> , 2008 , 273-276, 93-98	0.7	5
19	Studies of the VO centre in Ge using first principles cluster calculations. <i>Materials Science in Semiconductor Processing</i> , 2006 , 9, 489-493	4.3	5
18	Theoretical Investigations of the Energy Levels of Defects in Germanium. <i>Solid State Phenomena</i> , 2005 , 108-109, 697-702	0.4	5
17	First-principles study of the diffusion mechanisms of the self-interstitial in germanium. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 135220	1.8	4
16	Identification of stable and metastable forms of VO2 centers in germanium. <i>Physica B: Condensed Matter</i> , 2007 , 401-402, 192-195	2.8	4
15	2D Electrolytes: Theory, Modeling, Synthesis, and Characterization. <i>Advanced Materials</i> , 2021 , 33, e210	0442	4
14	The CuPL defect and the Cus1Cui3 complex. <i>Physica B: Condensed Matter</i> , 2012 , 407, 2967-2969	2.8	3

LIST OF PUBLICATIONS

13	Self-interstitials and Frenkel pairs in electron-irradiated germanium. <i>Physica B: Condensed Matter</i> , 2007 , 401-402, 495-498	2.8	3
12	Rashba-like dispersion in buckled square lattices. <i>Physical Review B</i> , 2017 , 96,	3.3	2
11	Effect of the adsorption of ethylene carbonate on Si surfaces on the Li insertion behavior. <i>Chemical Physics Letters</i> , 2013 , 585, 157-161	2.5	2
10	Electronic structural details of donor dacancy complexes in Si-doped Ge and Ge-doped Si. <i>Thin Solid Films</i> , 2010 , 518, 2381-2385	2.2	2
9	Complexes of self-interstitials with oxygen atoms in germanium. <i>Materials Science in Semiconductor Processing</i> , 2008 , 11, 344-347	4.3	2
8	Density-functional theory study of interstitial iron and its complexes with B and Al in dilute SiGe alloys. <i>Materials Science in Semiconductor Processing</i> , 2008 , 11, 332-335	4.3	2
7	Density-functional theory study of Au, Ag and Cu defects in germanium. <i>Materials Science in Semiconductor Processing</i> , 2008 , 11, 340-343	4.3	2
6	Increased electronic coupling in silicon nanocrystal networks doped with F4-TCNQ. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 1035-8	1.3	1
5	Electronic and optical properties of chlorinated silicon nanoparticles. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 1039-42	1.3	1
4	Oxygen defects in irradiated germanium. <i>Journal of Materials Science: Materials in Electronics</i> , 2007 , 18, 781-786	2.1	1
3	Primary Defects in n-Type Irradiated Germanium: A First-Principles Investigation. <i>Solid State Phenomena</i> , 2007 , 131-133, 253-258	0.4	O
2	Electronic structure of Zn, Cu and Ni impurities in germanium. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 065802	1.8	
1	Ab Initio Studies of Local Vibrations of Small Self-Interstitials Aggregates in Silicon. <i>Solid State Phenomena</i> , 2005 , 108-109, 175-180	0.4	