
Gengshen Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3760596/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced CO ₂ Capture Capacity of Nitrogen-Doped Biomass-Derived Porous Carbons. ACS Sustainable Chemistry and Engineering, 2016, 4, 1439-1445.	3.2	313
2	Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation. Applied Surface Science, 2016, 383, 248-252.	3.1	257
3	CO oxidation over CuO/Ce1â^'xCuxO2â^'δ and Ce1â^'xCuxO2â^'δ catalysts: Synergetic effects and kinetic study. Journal of Catalysis, 2012, 289, 199-209.	3.1	192
4	Highly Cost-Effective Nitrogen-Doped Porous Coconut Shell-Based CO ₂ Sorbent Synthesized by Combining Ammoxidation with KOH Activation. Environmental Science & Technology, 2015, 49, 7063-7070.	4.6	173
5	A new nanoporous nitrogen-doped highly-efficient carbonaceous CO2 sorbent synthesized with inexpensive urea and petroleum coke. Carbon, 2015, 81, 465-473.	5.4	158
6	Tetraethylenepentamine-Modified Siliceous Mesocellular Foam (MCF) for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2013, 52, 4221-4228.	1.8	120
7	Amine-modified ordered mesoporous silica: The effect of pore size on CO2 capture performance. Applied Surface Science, 2015, 324, 286-292.	3.1	92
8	Role of Hydrogen Peroxide Preoxidizing on CO ₂ Adsorption of Nitrogen-Doped Carbons Produced from Coconut Shell. ACS Sustainable Chemistry and Engineering, 2016, 4, 2806-2813.	3.2	92
9	In Situ FT-IR Study of Photocatalytic Decomposition of Formic Acid to Hydrogen on Pt/TiO2 Catalyst. Chinese Journal of Catalysis, 2008, 29, 105-107.	6.9	84
10	Adsorption of CO ₂ by Petroleum Coke Nitrogen-Doped Porous Carbons Synthesized by Combining Ammoxidation with KOH Activation. Industrial & Engineering Chemistry Research, 2016, 55, 757-765.	1.8	75
11	CO2 removal from flue gas with amine-impregnated titanate nanotubes. Nano Energy, 2016, 25, 1-8.	8.2	69
12	Nickel-Catalyzed Fabrication of SiO2, TiO2/Graphitized Carbon, and the Resultant Graphitized Carbon with Periodically Macroporous Structure. Chemistry of Materials, 2007, 19, 477-484.	3.2	68
13	Enhancement of CO2 adsorption and amine efficiency of titania modified by moderate loading of diethylenetriamine. Journal of Materials Chemistry A, 2013, 1, 6208.	5.2	63
14	Capturing CO ₂ with Amine-Impregnated Titanium Oxides. Energy & Fuels, 2013, 27, 5433-5439.	2.5	57
15	Nitrogen-doped porous carbon spheres derived from <scp>d</scp> -glucose as highly-efficient CO ₂ sorbents. RSC Advances, 2015, 5, 37964-37969.	1.7	57
16	Asymmetric hydroformylation of olefins catalyzed by rhodium nanoparticles chirally stabilized with (R)-BINAP ligand. Journal of Molecular Catalysis A, 2008, 283, 15-22.	4.8	55
17	Facile synthesis of nitrogen-enriched nanoporous carbon materials for high performance supercapacitors. Journal of Colloid and Interface Science, 2019, 538, 199-208.	5.0	52
18	N-doped carbons with hierarchically micro- and mesoporous structure derived from sawdust for high performance supercapacitors. Microporous and Mesoporous Materials, 2019, 279, 323-333.	2.2	50

Gengshen Hu

#	Article	IF	CITATIONS
19	Charge Transfer between Triphenyl Phosphine and Colloidal Silver:  A SERS Study Combined with DFT Calculations. Journal of Physical Chemistry C, 2007, 111, 8632-8637.	1.5	41
20	Effect of reduction temperature on Ru–Ir/ZnO catalyst for selective hydrogenation of crotonaldehyde. Journal of Molecular Catalysis A, 2014, 392, 89-96.	4.8	40
21	N-doped hierarchically micro- and mesoporous carbons with superior performance in supercapacitors. Electrochimica Acta, 2018, 291, 103-113.	2.6	40
22	Tetraethylenepentamine modified protonated titanate nanotubes for CO 2 capture. Fuel Processing Technology, 2015, 138, 663-669.	3.7	39
23	Stable Ir/SiO2 catalyst for selective hydrogenation of crotonaldehyde. Applied Surface Science, 2013, 270, 388-394.	3.1	38
24	Probing different effects of surface MOy and Mn+ species (M=Cu, Ni, Co, Fe) for xMOy/Ce0.9M0.1â^xO2â^l´ catalysts in CO oxidation. Applied Catalysis B: Environmental, 2014, 144, 325-332.	10.8	37
25	The effect of post-processing conditions on aminosilane functionalizaiton of mesocellular silica foam for post-combustion CO2 capture. Fuel, 2014, 123, 66-72.	3.4	37
26	CO2 Capture with Activated Carbons Prepared by Petroleum Coke and KOH at Low Pressure. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	36
27	Tetraethylenepentamine-Modified Silica Nanotubes for Low-Temperature CO ₂ Capture. Energy & Fuels, 2013, 27, 7673-7680.	2.5	36
28	Selective Hydrogenation of Crotonaldehyde over Ir–FeO _{<i>x</i>} /SiO ₂ Catalysts: Enhancement of Reactivity and Stability by Ir–FeO _{<i>x</i>} Interaction. Journal of Physical Chemistry C, 2016, 120, 8663-8673.	1.5	32
29	Adsorption of Ethanediamine on Colloidal Silver:  A Surface-Enhanced Raman Spectroscopy Study Combined with Density Functional Theory Calculations. Journal of Physical Chemistry C, 2007, 111, 11267-11274.	1.5	30
30	Characterizations of Ru/ZnO catalysts with different Ru contents for selective hydrogenation of crotonaldehyde. Journal of Industrial and Engineering Chemistry, 2013, 19, 250-255.	2.9	26
31	CO ₂ Adsorption and Desorption on MgO/Al ₂ O ₃ : An In Situ Diffuse Reflection Infrared Fourier Transform Spectroscopy (DRIFTS) Study. Applied Spectroscopy, 2012, 66, 122-127.	1.2	25
32	Cr ₂ O ₃ Catalysts for Fluorination of 2-Chloro-3,3,3-trifluoropropene to 2,3,3,3-Tetrafluoropropene. Industrial & amp; Engineering Chemistry Research, 2013, 52, 3295-3299.	1.8	20
33	Great improvement on the selective hydrogenation of crotonaldehyde over CrO _x - and FeO _x -promoted Ir/SiO ₂ catalysts. Catalysis Science and Technology, 2016, 6, 4294-4305.	2.1	20
34	Promoting effect of Ir on the catalytic property of Ru/ZnO catalysts for selective hydrogenation of crotonaldehyde. Applied Surface Science, 2013, 280, 179-185.	3.1	19
35	Synthesis of nitrogen-doped carbon with three-dimensional mesostructures for CO2 capture. Journal of Materials Science, 2015, 50, 1221-1227.	1.7	19
36	Hydrogen Adsorption and Oxidation on Pt Film: An in Situ Real-Time Attenuated Total Reflection Infrared (ATR-IR) Spectroscopic Study. Journal of Physical Chemistry C, 2013, 117, 12537-12543.	1.5	18

Gengshen Hu

#	Article	IF	CITATIONS
37	Robust "dry amine―solid CO2 sorbent synthesized by a facile, cost-effective and environmental friendly pathway. Chemical Engineering Journal, 2021, 404, 126447.	6.6	18
38	Solid state reaction of MoO3–CeO2 complex oxide studied by Raman spectroscopy. Solid State Sciences, 2011, 13, 2096-2099.	1.5	17
39	Effects of Ir content on selective hydrogenation of crotonaldehyde over Ir/ZrO2 catalysts. Catalysis Communications, 2012, 21, 5-8.	1.6	17
40	Kinetic and activity study of CO oxidation over CuO–MnOx–CeO2 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2016, 117, 503-520.	0.8	17
41	Preparation and CO ₂ Sorption of a High Surface Area Activated Carbon Obtained from the KOH Activation of Finger Citron Residue. Adsorption Science and Technology, 2012, 30, 183-191.	1.5	15
42	The volume expansion effect of amine during CO2 adsorption process: An experimental study combined with theoretical calculations. Journal of Colloid and Interface Science, 2020, 572, 190-197.	5.0	9
43	Coadsorption of trimethyl phosphine and thiocyanate on colloidal silver: a SERS study combined with theoretical calculations. Journal of Raman Spectroscopy, 2009, 40, 387-393.	1.2	8
44	Gas phase hydrogenolysis of methyl difluoroacetate to 1,1-difluoroethanol over Ru/C catalysts. Journal of Fluorine Chemistry, 2013, 145, 132-135.	0.9	7
45	Co-adsorption of hydrogen and CO on Pt film: AnÂin-situ ATR-IR study combined with DFT calculations. International Journal of Hydrogen Energy, 2013, 38, 13673-13679.	3.8	6
46	In Situ Real-Time Diffuse Reflection Infrared Fourier Transform Spectroscopy (DRIFTS) Study of Hydrogen Adsorption and Desorption on Ir/SiO2 Catalyst. Applied Spectroscopy, 2012, 66, 600-605.	1.2	5
47	CO Desorption Ability from Pt Enhanced by Al ₂ O ₃ : An in Situ Real-Time Attenuated Total Reflection Infrared Investigation. Journal of Physical Chemistry C, 2012, 116, 6247-6250.	1.5	5
48	Highly selective gas-phase synthesis of 1,1-dichloroethylene from 1,1,2-trichloroethane over supported amine catalysts. Chemical Research in Chinese Universities, 2015, 31, 787-791.	1.3	5
49	Porous carbons derived from potato for high-performancesupercapacitors. Ionics, 2020, 26, 6319-6329.	1.2	5
50	One-pot synthesis of nitrogen-doped carbons with hierarchically micro- and mesoporous structures for supercapacitors and CO ₂ capture. New Journal of Chemistry, 2021, 45, 6618-6629.	1.4	5
51	Hydrogen adsorption on high surface area Cr2 O3 materials. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1920-1924.	0.8	3
52	Effect of amine structure on CO2 capture performance of amine-modified SBA-15. Chemical Research in Chinese Universities, 2017, 33, 666-671.	1.3	2
53	CO and C3H8 total oxidation over Pd catalysts supported on commercial Ce-Zr solid solution: Effects of the calcination temperature and hydrothermal treatment. Chemical Research in Chinese Universities, 2015, 31, 288-293.	1.3	1