List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3760519/publications.pdf Version: 2024-02-01

		1233	1314
399	55,101	110	224
papers	citations	h-index	g-index
412	412	412	45493
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Photoluminescence from Chemically Exfoliated MoS ₂ . Nano Letters, 2011, 11, 5111-5116.	4.5	3,402
2	High tensile ductility in a nanostructured metal. Nature, 2002, 419, 912-915.	13.7	2,527
3	Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Materials, 2013, 12, 850-855.	13.3	2,326
4	Conducting MoS ₂ Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Letters, 2013, 13, 6222-6227.	4.5	1,948
5	Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotechnology, 2011, 6, 232-236.	15.6	1,914
6	A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Materialia, 2016, 102, 187-196.	3.8	1,665
7	Deformation Twinning in Nanocrystalline Aluminum. Science, 2003, 300, 1275-1277.	6.0	1,058
8	Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature, 2017, 544, 460-464.	13.7	843
9	Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nature Communications, 2017, 8, 15437.	5.8	813
10	Coherent Atomic and Electronic Heterostructures of Single-Layer MoS ₂ . ACS Nano, 2012, 6, 7311-7317.	7.3	806
11	Atomic origins of the high catalytic activity of nanoporous gold. Nature Materials, 2012, 11, 775-780.	13.3	803
12	Multifunctional Porous Graphene for Highâ€Efficiency Steam Generation by Heat Localization. Advanced Materials, 2015, 27, 4302-4307.	11.1	769
13	High Catalytic Activity of Nitrogen and Sulfur Coâ€Doped Nanoporous Graphene in the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2015, 54, 2131-2136.	7.2	760
14	Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts. Nature Materials, 2010, 9, 904-907.	13.3	638
15	Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nature Chemistry, 2015, 7, 45-49.	6.6	637
16	Nanoporous Graphene with Singleâ€Atom Nickel Dopants: An Efficient and Stable Catalyst for Electrochemical Hydrogen Production. Angewandte Chemie - International Edition, 2015, 54, 14031-14035.	7.2	628
17	Tunable Photoluminescence from Graphene Oxide. Angewandte Chemie - International Edition, 2012, 51, 6662-6666.	7.2	584
18	Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy and Environmental Science, 2016, 9, 2257-2261.	15.6	535

#	Article	IF	CITATIONS
19	Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength and Ductility. Annual Review of Materials Research, 2008, 38, 445-469.	4.3	513
20	Engineering water dissociation sites in MoS ₂ nanosheets for accelerated electrocatalytic hydrogen production. Energy and Environmental Science, 2016, 9, 2789-2793.	15.6	503
21	Core–Shellâ€6tructured CNT@RuO ₂ Composite as a Highâ€Performance Cathode Catalyst for Rechargeable Li–O ₂ Batteries. Angewandte Chemie - International Edition, 2014, 53, 442-446.	7.2	495
22	Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14769-14772.	3.3	487
23	Shock-Induced Localized Amorphization in Boron Carbide. Science, 2003, 299, 1563-1566.	6.0	483
24	Direct observation of local atomic order in a metallic glass. Nature Materials, 2011, 10, 28-33.	13.3	483
25	Geometric Frustration of Icosahedron in Metallic Glasses. Science, 2013, 341, 376-379.	6.0	423
26	Highly optimized embedded-atom-method potentials for fourteen fcc metals. Physical Review B, 2011, 83,	1.1	422
27	Metallic Mesoporous Nanocomposites for Electrocatalysis. Journal of the American Chemical Society, 2004, 126, 6876-6877.	6.6	410
28	A brief overview of bulk metallic glasses. NPG Asia Materials, 2011, 3, 82-90.	3.8	389
29	Nanoporous Metals for Catalytic and Optical Applications. MRS Bulletin, 2009, 34, 569-576.	1.7	378
30	Characterization of Nanoscale Mechanical Heterogeneity in a Metallic Glass by Dynamic Force Microscopy. Physical Review Letters, 2011, 106, 125504.	2.9	347
31	Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Applied Physics Letters, 2007, 91, .	1.5	342
32	Nanoporous Copper with Tunable Nanoporosity for SERS Applications. Advanced Functional Materials, 2009, 19, 1221-1226.	7.8	336
33	Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements. Applied Physics Letters, 2007, 90, 153120.	1.5	333
34	A Layered P2―and O3â€Type Composite as a Highâ€Energy Cathode for Rechargeable Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 5894-5899.	7.2	321
35	Zincâ€Mediated Template Synthesis of Feâ€N Electrocatalysts with Densely Accessible Feâ€N <i>_x</i> Active Sites for Efficient Oxygen Reduction. Advanced Materials, 2020, 32, e1907399.	11.1	319
36	Mechanical properties of refractory high-entropy alloys: Experiments and modeling. Journal of Alloys and Compounds, 2017, 696, 1139-1150.	2.8	307

#	Article	IF	CITATIONS
37	Atomic structure of nanoclusters in oxide-dispersion-strengthened steels. Nature Materials, 2011, 10, 922-926.	13.3	306
38	Fe ₂ O ₃ nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chemical Communications, 2014, 50, 1215-1217.	2.2	297
39	Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nature Communications, 2014, 5, 4402.	5.8	286
40	Relating activation of shear transformation zones to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>β</mml:mi>relaxations in metallic glasses. Physical Review B, 2010, 81, .</mml:math 	1.1	279
41	A Phthalocyanineâ€Based Layered Twoâ€Dimensional Conjugated Metal–Organic Framework as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 10677-10682.	7.2	278
42	Extraordinary Plasticity of Ductile Bulk Metallic Glasses. Physical Review Letters, 2006, 96, 245502.	2.9	275
43	Nanoporous Metals by Dealloying Multicomponent Metallic Glasses. Chemistry of Materials, 2008, 20, 4548-4550.	3.2	272
44	Bicontinuous Nanoporous Nâ€doped Graphene for the Oxygen Reduction Reaction. Advanced Materials, 2014, 26, 4145-4150.	11.1	261
45	AlON: A brief history of its emergence and evolution. Journal of the European Ceramic Society, 2009, 29, 223-236.	2.8	260
46	Rapid Degradation of Azo Dye by Feâ€Based Metallic Glass Powder. Advanced Functional Materials, 2012, 22, 2567-2570.	7.8	259
47	Enhanced tensile ductility and toughness in nanostructured Cu. Applied Physics Letters, 2002, 80, 2395-2397.	1.5	254
48	Lithiophilic 3D Nanoporous Nitrogenâ€Doped Graphene for Dendriteâ€Free and Ultrahighâ€Rate Lithiumâ€Metal Anodes. Advanced Materials, 2019, 31, e1805334.	11.1	254
49	Nanoporous PdNi Bimetallic Catalyst with Enhanced Electrocatalytic Performances for Electro-oxidation and Oxygen Reduction Reactions. Advanced Functional Materials, 2011, 21, 4364-4370.	7.8	251
50	Enhanced Supercapacitor Performance of MnO ₂ by Atomic Doping. Angewandte Chemie - International Edition, 2013, 52, 1664-1667.	7.2	251
51	Wrinkled Nanoporous Gold Films with Ultrahigh Surface-Enhanced Raman Scattering Enhancement. ACS Nano, 2011, 5, 4407-4413.	7.3	249
52	Metal and Nonmetal Codoped 3D Nanoporous Graphene for Efficient Bifunctional Electrocatalysis and Rechargeable Zn–Air Batteries. Advanced Materials, 2019, 31, e1900843.	11.1	236
53	Three-dimensional morphology of nanoporous gold. Applied Physics Letters, 2008, 92, .	1.5	235
54	Unveiling Electronic Properties in Metal–Phthalocyanine-Based Pyrazine-Linked Conjugated Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 16810-16816.	6.6	227

#	Article	IF	CITATIONS
55	Environmentally stable interface of layered oxide cathodes for sodium-ion batteries. Nature Communications, 2017, 8, 135.	5.8	218
56	Nanostructured Materials as Catalysts: Nanoporousâ€Gold atalyzed Oxidation of Organosilanes with Water. Angewandte Chemie - International Edition, 2010, 49, 10093-10095.	7.2	215
57	Highâ€Quality Threeâ€Dimensional Nanoporous Graphene. Angewandte Chemie - International Edition, 2014, 53, 4822-4826.	7.2	215
58	High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na _{0.8} Ni _{0.4} Ti _{0.6} O ₂ . Energy and Environmental Science, 2015, 8, 1237-1244.	15.6	215
59	Effect of defects on fracture strength of graphene sheets. Computational Materials Science, 2012, 54, 236-239.	1.4	208
60	Nanoporous Metal Enhanced Catalytic Activities of Amorphous Molybdenum Sulfide for Highâ€Efficiency Hydrogen Production. Advanced Materials, 2014, 26, 3100-3104.	11.1	204
61	Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties. Physical Chemistry Chemical Physics, 2010, 12, 239-246.	1.3	200
62	Single molecule detection from a large-scale SERS-active Au79Ag21 substrate. Scientific Reports, 2011, 1, 112.	1.6	198
63	Li Storage in 3D Nanoporous Au‧upported Nanocrystalline Tin. Advanced Materials, 2011, 23, 2443-2447.	11.1	198
64	Quasicrystals in a partially devitrified Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glass. Applied Physics Letters, 1999, 75, 1697-1699.	1.5	197
65	Intrinsic correlation between \hat{l}^2 -relaxation and spatial heterogeneity in a metallic glass. Nature Communications, 2016, 7, 11516.	5.8	197
66	3D Nanoporous Nitrogenâ€Đoped Graphene with Encapsulated RuO ₂ Nanoparticles for Li–O ₂ Batteries. Advanced Materials, 2015, 27, 6137-6143.	11.1	195
67	Atomic structure of amorphous shear bands in boron carbide. Nature Communications, 2013, 4, 2483.	5.8	190
68	Atomic-Scale Heterogeneity of a Multicomponent Bulk Metallic Glass with Excellent Glass Forming Ability. Physical Review Letters, 2009, 103, 075502.	2.9	189
69	High-temperature bulk metallic glasses developed by combinatorial methods. Nature, 2019, 569, 99-103.	13.7	185
70	Toward the Theoretical Capacitance of RuO ₂ Reinforced by Highly Conductive Nanoporous Gold. Advanced Energy Materials, 2013, 3, 851-856.	10.2	184
71	Stress-Temperature Scaling for Steady-State Flow in Metallic Glasses. Physical Review Letters, 2010, 104, 205701.	2.9	183
72	Evolution of a diffusion aluminide bond coat for thermal barrier coatings during thermal cycling. Acta Materialia, 2003, 51, 2205-2217.	3.8	179

#	Article	IF	CITATIONS
73	Nanoporous Gold Based Optical Sensor for Sub-ppt Detection of Mercury Ions. ACS Nano, 2013, 7, 4595-4600.	7.3	175
74	Hyperpolarized Xe NMR signal advancement by metal-organic framework entrapment in aqueous solution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17558-17563.	3.3	175
75	Atomicâ€Sized Pores Enhanced Electrocatalysis of TaS ₂ Nanosheets for Hydrogen Evolution. Advanced Materials, 2016, 28, 8945-8949.	11.1	167
76	Flow Unit Perspective on Room Temperature Homogeneous Plastic Deformation in Metallic Glasses. Physical Review Letters, 2014, 113, 045501.	2.9	165
77	3D Nanoporous Metal Phosphides toward Highâ€Efficiency Electrochemical Hydrogen Production. Advanced Materials, 2016, 28, 2951-2955.	11.1	163
78	Chemically exfoliated ReS ₂ nanosheets. Nanoscale, 2014, 6, 12458-12462.	2.8	160
79	A Threeâ€Dimensional Goldâ€Decorated Nanoporous Copper Core–Shell Composite for Electrocatalysis and Nonenzymatic Biosensing. Advanced Functional Materials, 2010, 20, 2279-2285.	7.8	159
80	Microstructure characterization of Cu-rich nanoprecipitates in a Fe–2.5 Cu–1.5 Mn–4.0 Ni–1.0 Al multicomponent ferritic alloy. Acta Materialia, 2013, 61, 2133-2147.	3.8	153
81	Geometrically Controlled Nanoporous PdAu Bimetallic Catalysts with Tunable Pd/Au Ratio for Direct Ethanol Fuel Cells. ACS Catalysis, 2013, 3, 1220-1230.	5.5	152
82	Selfâ€Grown Oxyâ€Hydroxide@ Nanoporous Metal Electrode for Highâ€Performance Supercapacitors. Advanced Materials, 2014, 26, 269-272.	11.1	152
83	Dynamic plasticity and failure of high-purity alumina under shock loading. Nature Materials, 2006, 5, 614-618.	13.3	149
84	Depressurization Amorphization of Single-Crystal Boron Carbide. Physical Review Letters, 2009, 102, 075505.	2.9	148
85	In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nature Communications, 2013, 4, 2413.	5.8	147
86	Structural origins of Johari-Goldstein relaxation in a metallic glass. Nature Communications, 2014, 5, 3238.	5.8	144
87	Fabrication of large-scale nanoporous nickel with a tunable pore size for energy storage. Journal of Power Sources, 2014, 247, 896-905.	4.0	140
88	Field Emission from Atomically Thin Edges of Reduced Graphene Oxide. ACS Nano, 2011, 5, 4945-4952.	7.3	139
89	Atomic-scale disproportionation in amorphous silicon monoxide. Nature Communications, 2016, 7, 11591.	5.8	138
90	Bicontinuous nanotubular graphene–polypyrrole hybrid for high performance flexible supercapacitors. Nano Energy, 2016, 19, 391-400.	8.2	137

#	Article	IF	CITATIONS
91	Highâ€Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transitionâ€Metal Dichalcogenide Nanosheets. Angewandte Chemie - International Edition, 2020, 59, 3601-3608.	7.2	136
92	Localized surface plasmon resonance of nanoporous gold. Applied Physics Letters, 2011, 98, .	1.5	135
93	Effect of Chemical Doping on Cathodic Performance of Bicontinuous Nanoporous Graphene for Liâ€O ₂ Batteries. Advanced Energy Materials, 2016, 6, 1501870.	10.2	132
94	Thermodynamic Origins of Shear Band Formation and the Universal Scaling Law of Metallic Glass Strength. Physical Review Letters, 2009, 103, 065504.	2.9	131
95	Microstructural Characterization of Commercial Hot-Pressed Boron Carbide Ceramics. Journal of the American Ceramic Society, 2005, 88, 1935-1942.	1.9	130
96	A Highâ€Voltage and Ultralongâ€Life Sodium Full Cell for Stationary Energy Storage. Angewandte Chemie - International Edition, 2015, 54, 11701-11705.	7.2	126
97	Reversible anionic redox activity in Na ₃ RuO ₄ cathodes: a prototype Na-rich layered oxide. Energy and Environmental Science, 2018, 11, 299-305.	15.6	126
98	Novel Nanoporous Auâ^'Pd Alloy with High Catalytic Activity and Excellent Electrochemical Stability. Journal of Physical Chemistry C, 2010, 114, 2600-2603.	1.5	124
99	Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying. Nature Communications, 2018, 9, 276.	5.8	123
100	Monodispersed hierarchical Co ₃ O ₄ spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 13805.	5.2	122
101	Enhanced mechanical properties of nanocrystalline boron carbide by nanoporosity and interface phases. Nature Communications, 2012, 3, 1052.	5.8	119
102	A Coreâ€Shell Nanoporous Ptâ€Cu Catalyst with Tunable Composition and High Catalytic Activity. Advanced Functional Materials, 2013, 23, 4156-4162.	7.8	118
103	Raman spectroscopy of pressure-induced amorphous boron carbide. Applied Physics Letters, 2006, 88, 131905.	1.5	117
104	Aligned Nanoporous Pt–Cu Bimetallic Microwires with High Catalytic Activity toward Methanol Electrooxidation. ACS Catalysis, 2015, 5, 3779-3785.	5.5	117
105	Correlation between Local Structure Order and Spatial Heterogeneity in a Metallic Glass. Physical Review Letters, 2017, 119, 215501.	2.9	116
106	Structural Origins of the Excellent Glass Forming Ability of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Pd</mml:mi><mml:mn>40</mml:mn></mml:msub><mml:msub><mml:msub><mml:r mathvariant="normal">P<mml:mn>20</mml:mn></mml:r </mml:msub>. Physical Review Letters, 2012, 108, 175501.</mml:msub></mml:math 	ni>2N∳×/mn	nl:mis <mml:n< td=""></mml:n<>
107	Threeâ€Dimensional (3D) Bicontinuous Au/Amorphousâ€Ge Thin Films as Fast and Highâ€Capacity Anodes for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 281-285.	10.2	115
108	Spatial heterogeneity as the structure feature for structure–property relationship of metallic glasses. Nature Communications, 2018, 9, 3965.	5.8	115

#	Article	IF	CITATIONS
109	Tracking the sliding of grain boundaries at the atomic scale. Science, 2022, 375, 1261-1265.	6.0	115
110	Regulating Infrared Photoresponses in Reduced Graphene Oxide Phototransistors by Defect and Atomic Structure Control. ACS Nano, 2013, 7, 6310-6320.	7.3	112
111	Surface coating of lithium–manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 4422.	5.2	112
112	First-Order Liquid-Liquid Phase Transition in Cerium. Physical Review Letters, 2013, 110, 125503.	2.9	111
113	Correlation between Chemical Dopants and Topological Defects in Catalytically Active Nanoporous Graphene. Advanced Materials, 2016, 28, 10644-10651.	11.1	110
114	New twinning route in face-centered cubic nanocrystalline metals. Nature Communications, 2017, 8, 2142.	5.8	110
115	Myotube formation on gelatin nanofibers – Multi-walled carbon nanotubes hybrid scaffolds. Biomaterials, 2014, 35, 6268-6277.	5.7	109
116	Atomic Observation of Catalysis-Induced Nanopore Coarsening of Nanoporous Gold. Nano Letters, 2014, 14, 1172-1177.	4.5	109
117	High Strength and Good Ductility of Bulk Quasicrystalline Base Alloys in Zr ₆₅ Al _{7.5} Ni ₁₀ Cu _{17.5&a System. Materials Transactions, JIM, 1999, 40, 1137-1143.}	mp ្ញាា រnus;	&l t;1& zgt;x&t
118	Ultrastable Silicon Anode by Three-Dimensional Nanoarchitecture Design. ACS Nano, 2020, 14, 4374-4382.	7.3	107
119	Formation of an intermediate compound with a B12H12cluster: experimental and theoretical studies on magnesium borohydride Mg(BH4)2. Nanotechnology, 2009, 20, 204013.	1.3	104
120	Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance. NPG Asia Materials, 2016, 8, e266-e266.	3.8	101
121	Chemical Vapor Deposition of Monolayer Mo1â^'xWxS2 Crystals with Tunable Band Gaps. Scientific Reports, 2016, 6, 21536.	1.6	101
122	Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers. Energy and Environmental Science, 2020, 13, 2849-2855.	15.6	101
123	Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors. Journal of Power Sources, 2012, 197, 325-329.	4.0	100
124	Coral-Shaped MoS ₂ Decorated with Graphene Quantum Dots Performing as a Highly Active Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 3653-3660.	4.0	98
125	Nanoporous metal by dealloying for electrochemical energy conversion and storage. MRS Bulletin, 2018, 43, 43-48.	1.7	96
126	Periosteumâ€Mimetic Structures Made from Freestanding Microgrooved Nanosheets. Advanced Materials, 2014, 26, 3290-3296.	11.1	94

#	Article	IF	CITATIONS
127	A Highâ€Capacity, Lowâ€Cost Layered Sodium Manganese Oxide Material as Cathode for Sodiumâ€lon Batteries. ChemSusChem, 2014, 7, 2115-2119.	3.6	93
128	Nucleation of shear bands in amorphous alloys. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3938-3942.	3.3	93
129	Dispersing Pt atoms onto nanoporous gold for high performance direct formic acid fuel cells. Chemical Science, 2014, 5, 403-409.	3.7	93
130	Macrodeformation Twins in Single-Crystal Aluminum. Physical Review Letters, 2016, 116, 075501.	2.9	92
131	Microstructural characterization of boron-rich boron carbide. Acta Materialia, 2017, 136, 202-214.	3.8	91
132	Structure and mechanical properties of boron-rich boron carbides. Journal of the European Ceramic Society, 2017, 37, 4514-4523.	2.8	89
133	Nanoporous metal based flexible asymmetric pseudocapacitors. Journal of Materials Chemistry A, 2014, 2, 10910-10916.	5.2	87
134	Evolution of structural and dynamic heterogeneities and activation energy distribution of deformation units in metallic glass. Applied Physics Letters, 2013, 102, .	1.5	86
135	Synergistic alloying effect on microstructural evolution and mechanical properties of Cu precipitation-strengthened ferritic alloys. Acta Materialia, 2013, 61, 7726-7740.	3.8	85
136	Visualizing Underâ€Coordinated Surface Atoms on 3D Nanoporous Gold Catalysts. Advanced Materials, 2016, 28, 1753-1759.	11.1	85
137	High-energy-density nonaqueous MnO2@nanoporous gold based supercapacitors. Journal of Materials Chemistry A, 2013, 1, 9202.	5.2	84
138	Enhanced Superconductivity in Restacked TaS ₂ Nanosheets. Journal of the American Chemical Society, 2017, 139, 4623-4626.	6.6	84
139	Precipitation of icosahedral phase from a supercooled liquid region in Zr65Cu7.5Al7.5Ni10Ag10 metallic glass. Applied Physics Letters, 1999, 75, 3497-3499.	1.5	82
140	Aerobic oxidation of alcohols in the liquid phase with nanoporous gold catalysts. Chemical Communications, 2012, 48, 4540.	2.2	82
141	Hybrid nanostructured aluminum alloy with super-high strength. NPG Asia Materials, 2015, 7, e229-e229.	3.8	82
142	Liquid-Gated Ambipolar Transport in Ultrathin Films of a Topological Insulator Bi ₂ Te ₃ . Nano Letters, 2011, 11, 2601-2605.	4.5	81
143	Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates. Scientific Reports, 2015, 5, 16327.	1.6	80
144	Ductile quasicrystalline alloys. Applied Physics Letters, 2000, 76, 967-969.	1.5	79

#	Article	IF	CITATIONS
145	Unusually Small Electrical Resistance of Three-Dimensional Nanoporous Gold in External Magnetic Fields. Physical Review Letters, 2008, 101, 166601.	2.9	79
146	Characteristic Length and Temperature Dependence of Surface Enhanced Raman Scattering of Nanoporous Gold. Journal of Physical Chemistry C, 2009, 113, 10956-10961.	1.5	79
147	A nanoscale co-precipitation approach for property enhancement of Fe-base alloys. Scientific Reports, 2013, 3, 1327.	1.6	79
148	Ultra-Large Room-Temperature Compressive Plasticity of a Nanocrystalline Metal. Nano Letters, 2007, 7, 2108-2111.	4.5	78
149	Extraordinary tensile strength and ductility of scalable nanoporous graphene. Science Advances, 2019, 5, eaat6951.	4.7	78
150	Epitaxial Casting of Nanotubular Mesoporous Platinum. Angewandte Chemie - International Edition, 2005, 44, 4002-4006.	7.2	77
151	Correlation between structural relaxation and shear transformation zone volume of a bulk metallic glass. Applied Physics Letters, 2009, 95, .	1.5	77
152	Observation of superconductivity in 1T′-MoS ₂ nanosheets. Journal of Materials Chemistry C, 2017, 5, 10855-10860.	2.7	77
153	Micromechanisms of serrated flow in a Ni50Pd30P20 bulk metallic glass with a large compression plasticity. Acta Materialia, 2008, 56, 2834-2842.	3.8	75
154	Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios. Applied Physics Letters, 2009, 94, .	1.5	75
155	Size Effects in the Mechanical Properties of Bulk Bicontinuous Ta/Cu Nanocomposites Made by Liquid Metal Dealloying. Advanced Engineering Materials, 2016, 18, 46-50.	1.6	75
156	The atomic origin of nickel-doping-induced catalytic enhancement in MoS ₂ for electrochemical hydrogen production. Nanoscale, 2019, 11, 7123-7128.	2.8	75
157	Coupling between chemical and dynamic heterogeneities in a multicomponent bulk metallic glass. Physical Review B, 2010, 81, .	1.1	74
158	Asymmetric metal oxide pseudocapacitors advanced by three-dimensional nanoporous metal electrodes. Journal of Materials Chemistry A, 2014, 2, 8448.	5.2	74
159	Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage. Nano Energy, 2018, 49, 354-362.	8.2	74
160	Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide. Physical Review Letters, 2018, 121, 145504.	2.9	73
161	Lowâ€Temperature Carbideâ€Mediated Growth of Bicontinuous Nitrogenâ€Doped Mesoporous Graphene as an Efficient Oxygen Reduction Electrocatalyst. Advanced Materials, 2018, 30, e1803588.	11.1	73
162	Three-Dimensional Nanoporous Co ₉ S ₄ P ₄ Pentlandite as a Bifunctional Electrocatalyst for Overall Neutral Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 3880-3888.	4.0	73

#	Article	IF	CITATIONS
163	Enhance the thermal stability and glass forming ability of Al-based metallic glass by Ca minor-alloying. Intermetallics, 2012, 29, 35-40.	1.8	71
164	A room-temperature magnetic semiconductor from a ferromagnetic metallic glass. Nature Communications, 2016, 7, 13497.	5.8	71
165	Electroplated Thick Manganese Oxide Films with Ultrahigh Capacitance. Advanced Energy Materials, 2013, 3, 857-863.	10.2	70
166	Large Enhancement of Quantum Dot Fluorescence by Highly Scalable Nanoporous Gold. Advanced Materials, 2014, 26, 1289-1294.	11.1	69
167	Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying. Nature Communications, 2017, 8, 1066.	5.8	69
168	Effect of Residual Silver on Surface-Enhanced Raman Scattering of Dealloyed Nanoporous Gold. Journal of Physical Chemistry C, 2011, 115, 19583-19587.	1.5	66
169	On hip Microâ€₽seudocapacitors for Ultrahigh Energy and Power Delivery. Advanced Science, 2015, 2, 1500067.	5.6	66
170	Characterization of oxide nanoprecipitates in an oxide dispersion strengthened 14YWT steel using aberration-corrected STEM. Acta Materialia, 2012, 60, 5686-5696.	3.8	65
171	Full Performance Nanoporous Graphene Based Liâ€O ₂ Batteries through Solution Phase Oxygen Reduction and Redoxâ€Additive Mediated Li ₂ O ₂ Oxidation. Advanced Energy Materials, 2017, 7, 1601933.	10.2	65
172	Tensile behavior and dynamic failure of aluminum 6092/B4C composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 433, 70-82.	2.6	64
173	Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production. Angewandte Chemie - International Edition, 2018, 57, 13302-13307.	7.2	64
174	Operando Observations of SEI Film Evolution by Mass‣ensitive Scanning Transmission Electron Microscopy. Advanced Energy Materials, 2019, 9, 1902675.	10.2	64
175	Synthesizing 1T–1H Two-Phase Mo _{1–<i>x</i>} W _{<i>x</i>} S ₂ Monolayers by Chemical Vapor Deposition. ACS Nano, 2018, 12, 1571-1579.	7.3	62
176	A nanostructured skeleton catalyst: Suzuki-coupling with a reusable and sustainable nanoporous metallic glass Pd-catalyst. Chemical Communications, 2011, 47, 5985.	2.2	60
177	Biofunctionalized nanoporous gold for electrochemical biosensors. Electrochimica Acta, 2012, 67, 1-5.	2.6	60
178	Nobleâ€Metalâ€Free Metallic Glass as a Highly Active and Stable Bifunctional Electrocatalyst for Water Splitting. Advanced Materials Interfaces, 2017, 4, 1601086.	1.9	60
179	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/M display="inline"> <mml:mi>R</mml:mi> MnO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow< td=""><td></td><td></td></mml:mrow<></mml:msub></mml:math 		

#	Article	IF	CITATIONS
181	Strengthening and softening of nanocrystalline nickel during multistep nanoindentation. Applied Physics Letters, 2006, 88, 161922.	1.5	58
182	A nanoporous metal recuperated MnO ₂ anode for lithium ion batteries. Nanoscale, 2015, 7, 15111-15116.	2.8	58
183	Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene. Nature Communications, 2017, 8, 14885.	5.8	58
184	A Phthalocyanineâ€Based Layered Twoâ€Dimensional Conjugated Metal–Organic Framework as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 10787-10792.	1.6	58
185	Dynamic Compressive Failure of AlON Under Controlled Planar Confinement. Journal of the American Ceramic Society, 2008, 91, 3619-3629.	1.9	56
186	Raman characterization of pseudocapacitive behavior of polypyrrole on nanoporous gold. Physical Chemistry Chemical Physics, 2014, 16, 3523.	1.3	56
187	Influences of grain size and grain boundary segregation on mechanical behavior of nanocrystalline Ni. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2297-2304.	2.6	55
188	Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. Nano Research, 2014, 7, 1569-1580.	5.8	54
189	Tuning Surface Structure of 3D Nanoporous Gold by Surfactantâ€Free Electrochemical Potential Cycling. Advanced Materials, 2017, 29, 1703601.	11.1	54
190	Bilayered nanoporous graphene/molybdenum oxide for high rate lithium ion batteries. Nano Energy, 2018, 45, 273-279.	8.2	54
191	Unprecedented Electromagnetic Interference Shielding from Three-Dimensional Bi-continuous Nanoporous Graphene. Matter, 2019, 1, 1077-1087.	5.0	53
192	3D Continuously Porous Graphene for Energy Applications. Advanced Materials, 2022, 34, e2108750.	11.1	53
193	Size dependence of molecular fluorescence enhancement of nanoporous gold. Applied Physics Letters, 2010, 96, 073701.	1.5	52
194	Deposition of multicomponent metallic glass films by single-target magnetron sputtering. Intermetallics, 2012, 21, 105-114.	1.8	52
195	Ultrahigh capacitance of nanoporous metal enhanced conductive polymer pseudocapacitors. Journal of Power Sources, 2013, 225, 304-310.	4.0	52
196	Regulating the coarsening of the $\hat{I}^3 \hat{e}^2$ phase in superalloys. NPG Asia Materials, 2015, 7, e212-e212.	3.8	52
197	Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery. Scientific Reports, 2016, 6, 33466.	1.6	52
198	Nanocrystalline grain structures developed in commercial purity Cu by low-temperature cold rolling. Journal of Materials Research, 2002, 17, 3004-3007.	1.2	51

#	Article	IF	CITATIONS
199	Extraordinary Supercapacitor Performance of a Multicomponent and Mixedâ€Valence Oxyhydroxide. Angewandte Chemie - International Edition, 2015, 54, 8100-8104.	7.2	50
200	Exploring the oxygen electrode bi-functional activity of Ni–N–C-doped graphene systems with N, C co-ordination and OH ligand effects. Journal of Materials Chemistry A, 2020, 8, 20453-20462.	5.2	49
201	Dislocation-mediated shear amorphization in boron carbide. Science Advances, 2021, 7, .	4.7	49
202	3D Bicontinuous Nanoporous Reduced Graphene Oxide for Highly Sensitive Photodetectors. Advanced Functional Materials, 2016, 26, 1271-1277.	7.8	48
203	Free-standing nanoporous gold for direct plasmon enhanced electro-oxidation of alcohol molecules. Nano Energy, 2019, 56, 286-293.	8.2	48
204	Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold. Applied Physics Letters, 2008, 92, .	1.5	47
205	Nanoindentation characterization of deformation and failure of aluminum oxynitride. Acta Materialia, 2011, 59, 1671-1679.	3.8	47
206	Electric Properties of Dirac Fermions Captured into 3D Nanoporous Graphene Networks. Advanced Materials, 2016, 28, 10304-10310.	11.1	47
207	Operando observations of RuO2 catalyzed Li2O2 formation and decomposition in a Li-O2 micro-battery. Nano Energy, 2018, 47, 427-433.	8.2	47
208	Dealloying Kinetics of AgAu Nanoparticles by <i>In Situ</i> Liquid-Cell Scanning Transmission Electron Microscopy. Nano Letters, 2020, 20, 1944-1951.	4.5	47
209	Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions. Nature Communications, 2020, 11, 1011.	5.8	47
210	A nanoporous nickel catalyst for selective hydrogenation of carbonates into formic acid in water. Green Chemistry, 2017, 19, 716-721.	4.6	46
211	Atomic origins of high electrochemical CO ₂ reduction efficiency on nanoporous gold. Nanoscale, 2018, 10, 8372-8376.	2.8	46
212	Crystalline Liquid and Rubber-Like Behavior in Cu Nanowires. Nano Letters, 2013, 13, 3812-3816.	4.5	45
213	Nanoporous metal/oxide hybrid materials for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 3620-3626.	5.2	45
214	Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials. Physical Review Letters, 2016, 117, 135501.	2.9	45
215	Vapor phase dealloying: A versatile approach for fabricating 3D porous materials. Acta Materialia, 2019, 163, 161-172.	3.8	45
216	Impurity oxygen redistribution in a nanocrystallized Zr65Cr15Al10Pd10 metallic glass. Applied Physics Letters, 1999, 74, 812-814.	1.5	44

#	Article	IF	CITATIONS
217	Nanoporous Gold-Catalyzed [4+2] Benzannulation between ortho-Alkynylbenzaldehydes and Alkynes. Synlett, 2012, 2012, 66-69.	1.0	44
218	Kinetic evidence for the structural similarity between a supercooled liquid and an icosahedral phase in Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glass. Applied Physics Letters, 2001, 79, 42-44.	1.5	43
219	Controlled Formation and Mechanical Characterization of Metallic Glassy Nanowires. Advanced Materials, 2010, 22, 872-875.	11.1	43
220	Pressure-induced depolarization and resonance in Raman scattering of single-crystalline boron carbide. Physical Review B, 2010, 81, .	1.1	43
221	Nucleation of amorphous shear bands at nanotwins in boron suboxide. Nature Communications, 2016, 7, 11001.	5.8	43
222	Three-dimensional porous graphene networks expand graphene-based electronic device applications. Physical Chemistry Chemical Physics, 2018, 20, 6024-6033.	1.3	43
223	Nanotwinned Boron Suboxide (B6O): New Ground State of B6O. Nano Letters, 2016, 16, 4236-4242.	4.5	42
224	Locating Si atoms in Si-doped boron carbide: A route to understand amorphization mitigation mechanism. Acta Materialia, 2018, 157, 106-113.	3.8	42
225	Low-temperature solution-processable Ni(OH) ₂ ultrathin nanosheet/N-graphene nanohybrids for high-performance supercapacitor electrodes. Nanoscale, 2014, 6, 5960-5966.	2.8	41
226	Direct Observations of the Formation and Redoxâ€Mediatorâ€Assisted Decomposition of Li ₂ O ₂ in a Liquidâ€Cell Li–O ₂ Microbattery by Scanning Transmission Electron Microscopy. Advanced Materials, 2017, 29, 1702752.	11.1	41
227	Capturing Reversible Cation Migration in Layered Structure Materials for Naâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1900189.	10.2	41
228	Evaluating the catalytic activity of transition metal dimers for the oxygen reduction reaction. Journal of Colloid and Interface Science, 2020, 568, 54-62.	5.0	41
229	Synthesis and Optical Properties of Three-Dimensional Porous Coreâ^'Shell Nanoarchitectures. Langmuir, 2008, 24, 4426-4429.	1.6	40
230	Reusable and Sustainable Nanostructured Skeleton Catalyst: Heck Reaction with Nanoporous Metallic Glass Pd (PdNPore) as a Support, Stabilizer and Ligandâ€Free Catalyst. Advanced Synthesis and Catalysis, 2011, 353, 2927-2932.	2.1	39
231	Influence of Aging and Thermomechanical Treatments on the Mechanical Properties of a Nanocluster-Strengthened Ferritic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 351-359.	1.1	39
232	Time-resolved atomic-scale observations of deformation and fracture of nanoporous gold under tension. Acta Materialia, 2019, 165, 99-108.	3.8	39
233	Crossover from stochastic activation to cooperative motions of shear transformation zones in metallic glasses. Applied Physics Letters, 2013, 103, 081904.	1.5	38
234	Sample size induced brittle-to-ductile transition of single-crystal aluminum nitride. Acta Materialia, 2015, 88, 252-259.	3.8	38

#	Article	IF	CITATIONS
235	Probing the structure of a liquid metal during vitrification. Acta Materialia, 2015, 87, 174-186.	3.8	38
236	Tunable Nanoporous Metallic Glasses Fabricated by Selective Phase Dissolution and Passivation for Ultrafast Hydrogen Uptake. Chemistry of Materials, 2017, 29, 4478-4483.	3.2	38
237	Growth of Topological Insulator Bi ₂ Te ₃ Ultrathin Films on Si(111) Investigated by Low-Energy Electron Microscopy. Crystal Growth and Design, 2010, 10, 4491-4493.	1.4	37
238	Fast coalescence of metallic glass nanoparticles. Nature Communications, 2019, 10, 5249.	5.8	37
239	Effect of Local Atomic Structure on Sodium Ion Storage in Hard Amorphous Carbon. Nano Letters, 2021, 21, 6504-6510.	4.5	37
240	Surface-Enhanced Raman Scattering of Silver@Nanoporous Copper Coreâ^'Shell Composites Synthesized by an In Situ Sacrificial Template Approach. Journal of Physical Chemistry C, 2009, 113, 14195-14199.	1.5	36
241	Large-scale growth of sharp gold nano-cones for single-molecule SERS detection. RSC Advances, 2016, 6, 2882-2887.	1.7	36
242	Origin of ferromagnetism and oxygen-vacancy ordering induced cross-controlled magnetoelectric effects at room temperature. Journal of Applied Physics, 2012, 111, .	1.1	35
243	High-quality single-layer nanosheets of MS ₂ (M = Mo, Nb, Ta, Ti) directly exfoliated from AMS ₂ (A = Li, Na, K) crystals. Journal of Materials Chemistry C, 2017, 5, 5977-5983.	2.7	35
244	Graphene-based quasi-solid-state lithium–oxygen batteries with high energy efficiency and a long cycling lifetime. NPG Asia Materials, 2018, 10, 1037-1045.	3.8	35
245	Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials. Physical Review Letters, 2018, 120, 205502.	2.9	35
246	Grain growth behaviour of quasicrystals from the supercooled liquid region of Zr65Cu7.5Al7.5Ni10Ag10 metallic glass. Philosophical Magazine Letters, 2000, 80, 79-84.	0.5	34
247	Mechanical scratching induced phase transitions and reactions of boron carbide. Journal of Applied Physics, 2006, 100, 123517.	1.1	32
248	Metallic Glass Nanowire. Nano Letters, 2008, 8, 516-519.	4.5	32
249	Asymmetric twins in rhombohedral boron carbide. Applied Physics Letters, 2014, 104, 021907.	1.5	32
250	Two-Dimensional Hallmark of Highly Interconnected Three-Dimensional Nanoporous Graphene. ACS Omega, 2017, 2, 3691-3697.	1.6	32
251	Crystallization during Bending of a Pd-Based Metallic Glass Detected by X-Ray Microscopy. Physical Review Letters, 2012, 109, 085501.	2.9	31
252	The synergistic effect of nanoporous AuPd alloy catalysts on highly chemoselective 1,4-hydrosilylation of conjugated cyclic enones. Chemical Communications, 2014, 50, 3344.	2.2	31

#	Article	IF	CITATIONS
253	The interaction of deformation twins with long-period stacking ordered precipitates in a magnesium alloy subjected to shock loading. Acta Materialia, 2020, 188, 203-214.	3.8	31
254	Low temperature uniform plastic deformation of metallic glasses during elastic iteration. Acta Materialia, 2012, 60, 3741-3747.	3.8	30
255	Composition mediated serration dynamics in Zr-based bulk metallic glasses. Applied Physics Letters, 2015, 107, .	1.5	30
256	Tailored nanoporous gold for ultrahigh fluorescence enhancement. Physical Chemistry Chemical Physics, 2011, 13, 3795.	1.3	29
257	3D bicontinuous nanoporous plasmonic heterostructure for enhanced hydrogen evolution reaction under visible light. Nano Energy, 2019, 58, 552-559.	8.2	29
258	Scalable synthesis of nanoporous boron for high efficiency ammonia electrosynthesis. Materials Today, 2020, 38, 58-66.	8.3	29
259	Diffusionally accommodated interfacial sliding in metal-silicon systems. Acta Materialia, 2003, 51, 2831-2846.	3.8	27
260	Comment on "Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel". Science, 2005, 308, 356c-356c.	6.0	27
261	Electrochemical synthesis of palladium nanostructures with controllable morphology. Nanotechnology, 2010, 21, 085601.	1.3	27
262	Threeâ€Dimensional Hierarchical Nanoporosity for Ultrahigh Power and Excellent Cyclability of Electrochemical Pseudocapacitors. Advanced Energy Materials, 2014, 4, 1301809.	10.2	27
263	Online Monitoring of Superoxide Anions Released from Skeletal Muscle Cells Using an Electrochemical Biosensor Based on Thick-Film Nanoporous Gold. ACS Sensors, 2016, 1, 921-928.	4.0	27
264	Macroporous mesh of nanoporous gold in electrochemical monitoring of superoxide release from skeletal muscle cells. Biosensors and Bioelectronics, 2017, 88, 41-47.	5.3	27
265	Three-Dimensional Nanoporous Heterojunction of Monolayer MoS ₂ @rGO for Photoenhanced Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 2183-2191.	2.5	27
266	Theoretical Study on a Nitrogen-Doped Graphene Nanoribbon with Edge Defects as the Electrocatalyst for Oxygen Reduction Reaction. ACS Omega, 2020, 5, 5142-5149.	1.6	27
267	Nanoporous Metal Papers for Scalable Hierarchical Electrode. Advanced Science, 2015, 2, 1500086.	5.6	26
268	Metallic Glass as a Mechanical Material for Microscanners. Advanced Functional Materials, 2015, 25, 5677-5682.	7.8	26
269	Flexible supercapacitor electrodes fabricated by dealloying nanocrystallized Al-Ni-Co-Y-Cu metallic glasses. Journal of Alloys and Compounds, 2019, 772, 164-172.	2.8	26
270	Effect of heavy boron doping on pressure-induced phase transitions in single-crystal silicon. Applied Physics Letters, 2005, 87, 191911.	1.5	25

#	Article	IF	CITATIONS
271	Interface structure and properties of a brass-reinforced Ni59Zr20Ti16Si2Sn3 bulk metallic glass composite. Acta Materialia, 2008, 56, 3077-3087.	3.8	25
272	Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy. Scientific Reports, 2018, 8, 3134.	1.6	25
273	Flaw-free nanoporous Ni for tensile properties. Acta Materialia, 2019, 166, 402-412.	3.8	25
274	Deformation behavior of a nanoporous metallic glass at room temperature. International Journal of Plasticity, 2022, 152, 103232.	4.1	25
275	Atomic force microscopy study of plastic deformation and interfacial sliding in Al thin film: Si substrate systems due to thermal cycling. Applied Physics Letters, 2000, 77, 4298-4300.	1.5	24
276	Plastic deformation and interfacial sliding in Al and Cu thin film: Si substrate systems due to thermal cycling. Journal of Electronic Materials, 2001, 30, 1537-1548.	1.0	24
277	Temperature-induced anomalous brittle-to-ductile transition of bulk metallic glasses. Applied Physics Letters, 2011, 99 Atomic and electronic structure of Pd <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">-display="balk and electronic structure of Pd<mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.5</td><td>24</td></mml:math></mml:math>	1.5	24
278	/> <mml:mn>40</mml:mn> Ni <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>40</mml:mn></mml:mrow </mml:msub>P<mml:math< td=""><td>1.1</td><td>24</td></mml:math<></mml:math 	1.1	24
279	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /><mml: Dirac Fermion Kinetics in 3D Curved Graphene. Advanced Materials, 2020, 32, e2005838.</mml: </mml:mrow </mml:msub>	11.1	24
280	Decoupling between calorimetric and dynamical glass transitions in high-entropy metallic glasses. Nature Communications, 2021, 12, 3843.	5.8	24
281	Remarkable effect of minor boron doping on the formation of the largest size Ni-rich bulk metallic glasses. Scripta Materialia, 2009, 60, 925-928.	2.6	23
282	Scanning distortion correction in STEM images. Ultramicroscopy, 2018, 184, 274-283.	0.8	23
283	Microstructural characterization of a platinum-modified diffusion aluminide bond coat for thermal barrier coatings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 2289-2299.	1.1	22
284	Doping Effect on High-Pressure Structural Stability of ZnO Nanowires. Journal of Physical Chemistry C, 2009, 113, 1164-1167.	1.5	22
285	Nano-twinned structure and photocatalytic properties under visible light for undoped nano-titania synthesised by hydrothermal reaction in water–ethanol mixture. Journal of Supercritical Fluids, 2011, 58, 136-141.	1.6	22
286	Thermal properties of nanoporous gold. Physical Review B, 2012, 85, .	1.1	22
287	Environment-Sensitive Thermal Coarsening of Nanoporous Gold. Materials Transactions, 2015, 56, 468-472.	0.4	22
288	Non-aqueous nanoporous gold based supercapacitors with high specific energy. Scripta Materialia, 2016, 116, 76-81.	2.6	22

#	Article	IF	CITATIONS
289	Hierarchical Nanoporous Copper Fabricated by Oneâ€Step Dealloying Toward Ultrasensitive Surfaceâ€Enhanced Raman Sensing. Advanced Materials Interfaces, 2018, 5, 1800332.	1.9	22
290	Catalytic oxidation mechanisms of carbon monoxide over single- and double-vacancy Mn-embedded graphene. New Journal of Chemistry, 2020, 44, 9402-9410.	1.4	22
291	In situ atomic-scale observation of dislocation climb and grain boundary evolution in nanostructured metal. Nature Communications, 2022, 13, .	5.8	22
292	Electron holography of single-crystal iron nanorods encapsulated in carbon nanotubes. Journal of Applied Physics, 2007, 101, 014323.	1.1	21
293	High-pressure Raman spectroscopy of carbon onions and nanocapsules. Applied Physics Letters, 2009, 95, .	1.5	21
294	Structural evolution of nanoscale metallic glasses during high-pressure torsion: A molecular dynamics analysis. Scientific Reports, 2016, 6, 36627.	1.6	21
295	Unveiling Three-Dimensional Stacking Sequences of 1T Phase MoS ₂ Monolayers by Electron Diffraction. ACS Nano, 2016, 10, 10308-10316.	7.3	21
296	Atomic Ni and Cu co-anchored 3D nanoporous graphene as an efficient oxygen reduction electrocatalyst for zinc–air batteries. Nanoscale, 2021, 13, 10862-10870.	2.8	21
297	<i>In situ</i> Raman characterization of reversible phase transition in stress-induced amorphous silicon. Applied Physics Letters, 2007, 91, . Doping and temperature dependence of Raman scattering from <mml:math< td=""><td>1.5</td><td>20</td></mml:math<>	1.5	20
298	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mtext>NdFeAsO</mml:mtext></mml:mrow><mn xmlns:mml="http://www.w3.org/1998/Math/MathML"</mn </mml:msub></mml:mrow>	nl:mrow><	mml:mn>1<

#	Article	IF	CITATIONS
307	Electrical conductivity of a bulk metallic glass composite. Applied Physics Letters, 2007, 91, .	1.5	18
308	Multicomponent nanoporous metals prepared by dealloying Pd80â^'xNixP20 metallic glasses. Intermetallics, 2015, 61, 66-71.	1.8	18
309	Earthâ€Abundant and Durable Nanoporous Catalyst for Exhaustâ€Gas Conversion. Advanced Functional Materials, 2016, 26, 1609-1616.	7.8	18
310	Hidden Effects of Negative Stacking Fault Energies in Complex Concentrated Alloys. Physical Review Letters, 2021, 126, 255502.	2.9	18
311	Formation and properties of strontium-based bulk metallic glasses with ultralow glass transition temperature. Journal of Materials Research, 2012, 27, 2593-2600.	1.2	17
312	Metal-carbide eutectics with multiprincipal elements make superrefractory alloys. Science Advances, 2022, 8, .	4.7	17
313	Extraordinary Supercapacitor Performance of a Multicomponent and Mixedâ€Valence Oxyhydroxide. Angewandte Chemie, 2015, 127, 8218-8222.	1.6	16
314	Atomistic mechanism of nano-scale phase separation in fcc-based high entropy alloys. Journal of Alloys and Compounds, 2016, 663, 340-344.	2.8	16
315	Transparent magnetic semiconductor with embedded metallic glass nano-granules. Materials and Design, 2017, 132, 208-214.	3.3	16
316	Effect of Au Content on Thermal Stability and Mechanical Properties of Au-Cu-Ag-Si Bulk Metallic Glasses. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 1486-1490.	1.1	15
317	Angstrom-beam electron diffraction of amorphous materials. Journal of Non-Crystalline Solids, 2014, 383, 52-58.	1.5	15
318	Primary and secondary precipitates in a hierarchical-precipitate-strengthened ferritic alloy. Journal of Alloys and Compounds, 2017, 706, 584-588.	2.8	15
319	Stability limits and transformation pathways of <i>α</i> -quartz under high pressure. Physical Review B, 2017, 95, .	1.1	15
320	Formation of icosahedral quasicrystals in an annealed Zr65Al7.5Ni10Cu12.5Ag5metallic glass. Philosophical Magazine Letters, 2000, 80, 263-269.	0.5	14
321	Measuring Elastic Energy Density of Bulk Metallic Glasses by Nanoindentation. Materials Transactions, 2006, 47, 1981-1984.	0.4	14
322	Experimental and numerical investigation on ductile-brittle fracture transition in a magnesium alloy. Journal of Materials Science, 2007, 42, 7702-7707.	1.7	14
323	Rate-change instrumented indentation for measuring strain rate sensitivity. Journal of Materials Research, 2009, 24, 1466-1470.	1.2	14
324	Enhanced Electrochemical Performances of Nanoporous Gold by Surface Modification of Titanium Dioxide Nanoparticles. Materials Transactions, 2010, 51, 1566-1569.	0.4	14

#	Article	IF	CITATIONS
325	Spin-Dependent Electronâ^'Phonon Interaction in SmFeAsO by Low-Temperature Raman Spectroscopy. Journal of the American Chemical Society, 2010, 132, 15223-15227.	6.6	14
326	Screw-rotation twinning through helical movement of triple-partials. Applied Physics Letters, 2012, 101, 121901.	1.5	14
327	Characterization of Gd-rich precipitates in a fully lamellar TiAl alloy. Scripta Materialia, 2017, 137, 50-54.	2.6	14
328	Twisting of 2D Kagomé Sheets in Layered Intermetallics. ACS Central Science, 2021, 7, 1381-1390.	5.3	14
329	Quasicrystals and nano-quasicrystals in annealed ZrAlNiCuAg metallic glasses. Intermetallics, 2000, 8, 493-498.	1.8	13
330	Annealing embrittlement of Al89Fe10Zr1 amorphous alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 325, 182-185.	2.6	13
331	On the effect of impurities in metallic glass formation. Applied Physics Letters, 2010, 96, .	1.5	13
332	Dynamic shear punching of metallic glass matrix composites. Intermetallics, 2013, 36, 31-35.	1.8	13
333	Propensity of bond exchange as a window into the mechanical properties of metallic glasses. Applied Physics Letters, 2015, 106, .	1.5	13
334	Valenceâ€band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2380-2386.	0.8	13
335	An ultrahigh volumetric capacitance of squeezable three-dimensional bicontinuous nanoporous graphene. Nanoscale, 2016, 8, 18551-18557.	2.8	13
336	Chemical doping induced zone-edge phonon renormalization in single-layer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Mo</mml:mi> <mml:msub> <mml:n mathvariant="normal">S <mml:mn>2</mml:mn> </mml:n </mml:msub> </mml:mrow> . Physical Review B, 2019, 100, .</mml:math 	¹ⁱ 1.1	13
337	Experimental observations of the mechanisms associated with the high hardening and low strain to failure of magnesium. Materialia, 2019, 8, 100504.	1.3	13
338	Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction. Nanoscale, 2021, 13, 10916-10924.	2.8	13
339	Bis(phthalocyaninato)yttrium grown on Au(111): Electronic structure of a single molecule and the stability of two-dimensional films investigated by scanning tunneling microscopy/spectroscopy at 4.8 K. Nano Research, 2010, 3, 604-611.	5.8	12
340	Deformation behavior of metallic glass thin films. Journal of Applied Physics, 2012, 112, 063504.	1.1	12
341	Direct synthesis of fullerene-intercalated porous carbon nanofibers by chemical vapor deposition. Carbon, 2012, 50, 5162-5166.	5.4	12
342	Graphene@Nanoporous Nickel Cathode for Liâ^'O ₂ Batteries. ChemNanoMat, 2016, 2, 176-181.	1.5	12

#	Article	IF	CITATIONS
343	Superhard B ₂ CO phases derived from carbon allotropes. RSC Advances, 2017, 7, 52192-52199.	1.7	12
344	The influence of a martensitic phase transformation on stress development in thermal barrier coating systems. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 2279-2286.	1.1	11
345	Addition of Fe2O3 as oxygen carrier for preparation of nanometer-sized oxide strengthened steels. Journal of Nuclear Materials, 2010, 405, 199-202.	1.3	11
346	Highâ€Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transitionâ€Metal Dichalcogenide Nanosheets. Angewandte Chemie, 2020, 132, 3629-3636.	1.6	11
347	Synergetic Effect of Liquid and Solid Catalysts on the Energy Efficiency of Li–O ₂ Batteries: Cell Performances and Operando STEM Observations. Nano Letters, 2020, 20, 2183-2190.	4.5	11
348	3D Bimodal Porous Amorphous Carbon with Self-Similar Porosity by Low-Temperature Sequential Chemical Dealloying. Chemistry of Materials, 2021, 33, 1013-1021.	3.2	11
349	Decoupling between Shockley partials and stacking faults strengthens multiprincipal element alloys. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
350	Influence of lamellar lath orientation on crack propagation in a gamma TiAl alloy. Scripta Materialia, 1997, 36, 497-501.	2.6	10
351	Reaction at the interface between Si melt and a Ba-doped silica crucible. Journal of Crystal Growth, 2005, 277, 154-161.	0.7	10
352	Origin of yielding in metallic glass: Stress-induced flow. Applied Physics Letters, 2014, 104, 251901.	1.5	10
353	Formation and properties of P-free Pd-based metallic glasses with high glass-forming ability. Journal of Alloys and Compounds, 2014, 617, 310-313.	2.8	10
354	Chemical Selectivity at Grain Boundary Dislocations in Monolayer Mo _{1–<i>x</i>} W _{<i>x</i>} S ₂ Transition Metal Dichalcogenides. ACS Applied Materials & Interfaces, 2017, 9, 29438-29444.	4.0	10
355	Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production. Angewandte Chemie, 2018, 130, 13486-13491.	1.6	10
356	Using Hardness Tests to Quantify Bulk Plasticity and Predict Transition Velocities in <scp>SiC</scp> Materials. International Journal of Applied Ceramic Technology, 2013, 10, 114-122.	1.1	9
357	Room-temperature superplasticity in Au nanowires and their atomistic mechanisms. Nanoscale, 2019, 11, 8727-8735.	2.8	9
358	Universal scaling law of glass rheology. Nature Materials, 2022, 21, 404-409.	13.3	9
359	Redistribution of alloying elements in quasicrystallizedZr65Al7.5Ni10Cu7.5Ag10bulk metallic glass. Physical Review B, 2005, 71, .	1.1	8
360	TEM Sample Preparation for Microcompressed Nanocrystalline Ni. Materials Transactions, 2008, 49, 2091-2095.	0.4	8

#	Article	IF	CITATIONS
361	Correlation between surface whisker growth and interfacial precipitation in aluminum thin films on silicon substrates. Journal of Materials Science, 2010, 45, 3367-3374.	1.7	8
362	Effect of doping and counterdoping on high-pressure phase transitions of silicon. Applied Physics Letters, 2010, 96, 251910.	1.5	8
363	Deformation-induced change in the structure of metallic glasses during multistep indentation. Physical Review B, 2010, 81, .	1.1	8
364	Distribution of Nb and Co in an α-Fe/Nd2Fe14B-type nanocomposite. Journal of Applied Physics, 2000, 88, 6928-6930.	1.1	7
365	Local atomic structure of Ni60Pd20P20 and Ni60Pd20P17B3 bulk metallic glasses and the origin of glass forming ability. Journal of Alloys and Compounds, 2010, 496, 135-139.	2.8	7
366	Distorted icosahedral Ni5Nb3Zr5 clusters in the as-quenched and hydrogenated amorphous (Ni0.6Nb0.4)0.65Zr0.35 alloys. Journal of Non-Crystalline Solids, 2011, 357, 3357-3360.	1.5	7
367	Comparative Study on Plastic Deformation of Nanocrystalline Al and Ni. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 1631-1638.	1.1	7
368	Partitioning behavior of Al in a nanocrystalline FeZrBAl soft magnetic alloy. Journal of Applied Physics, 2000, 87, 439-442.	1.1	6
369	Transiently suppressed relaxations in metallic glass. Applied Physics Letters, 2013, 103, .	1.5	6
370	Nucleation reactions during deformation and crystallization of metallic glass. Journal of Alloys and Compounds, 2012, 536, S55-S59.	2.8	5
371	Atomic structure and mechanical response of coincident stacking faults in boron suboxide. Materials Research Letters, 2019, 7, 75-81.	4.1	5
372	Modulated structure in a rapidly solidified Ni-47Al alloy. Materials Letters, 1996, 28, 513-516.	1.3	4
373	Temperature dependence of Raman scattering in Si crystals with heavy B and/or Ge doping. Materials Science in Semiconductor Processing, 2006, 9, 257-260.	1.9	4
374	Plastic Deformation-Assisted Synthesis of Metallic Glass Nanostructures. Materials Transactions, 2009, 50, 1890-1893.	0.4	4
375	Compressive behaviour of nanocrystalline Mg–5Al alloys. Materials Technology, 2012, 27, 85-87.	1.5	4
376	Inelastic electron-tunneling spectroscopy of nanoporous gold films. Physical Review B, 2014, 89, .	1.1	4
377	Anisotropic and Multicomponent Nanostructures by Controlled Symmetry Breaking of Metal Halide Intermediates. Nano Letters, 2018, 18, 2324-2328.	4.5	4
378	One-Dimensional Atomic Segregation at Semiconductor–Metal Interfaces of Polymorphic Transition Metal Dichalcogenide Monolayers. Nano Letters, 2018, 18, 6157-6163.	4.5	4

#	Article	IF	CITATIONS
379	Mechanical Behavior of Nanocrystalline Metals. , 2006, , .		4
380	Formation of Rosette-Like Nanopatterns by Selective Corrosion of Metallic Glass. Japanese Journal of Applied Physics, 2008, 47, 8678-8680.	0.8	3
381	Modulated Na\$_{2}\$Ti\$_{4}\$O\$_{9}\$:Zr Nanobelt via Site-Specific Zr Doping. Applied Physics Express, 2011, 4, 085003.	1.1	3
382	Mixing Time of Molecules Inside of Nanoporous Gold. SIAM Journal on Applied Mathematics, 2014, 74, 1298-1314.	0.8	3
383	Preferred location for conducting filament formation in thin-film nano-ionic electrolyte: study of microstructure by atom-probe tomography. Journal of Materials Science: Materials in Electronics, 2017, 28, 6846-6851.	1.1	3
384	Deformation behaviour of 18R long-period stacking ordered structure in an Mg-Zn-Y alloy under shock loading. Intermetallics, 2018, 102, 21-25.	1.8	3
385	A Rapid Method to Aromatic Aminoalkyl Esters via the Catalyst-Free Difunctionalization of C–N Bonds. Synthesis, 2018, 50, 2587-2594.	1.2	3
386	Twisted 1T TaS2 bilayers by lithiation exfoliation. Nanoscale, 2020, 12, 18031-18038.	2.8	3
387	Visualization of topological landscape in shear-flow dynamics of amorphous solids. Europhysics Letters, 2015, 110, 38002.	0.7	2
388	An electrochemical biosensor based on gold microspheres and nanoporous gold for real-time detection of superoxide anion in skeletal muscle tissue. , 2015, 2015, 7962-5.		2
389	Structures and Structural Evolution of Sublayer Surfaces of Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 21603-21608.	1.6	2
390	Fast attenuation of high-frequency acoustic waves in bicontinuous nanoporous gold. Applied Physics Letters, 2021, 119, .	1.5	2
391	In Situ Straining Tem Observation of Fracture behavior in Pst Crystals of TiAl. Materials Research Society Symposia Proceedings, 1994, 364, 1047.	0.1	1
392	Quantitative electron holographic tomography for a spherical object. Microscopy (Oxford, England), 2009, 58, 301-304.	0.7	1
393	Structure Analysis of Amorphous Materials Using a STEM Electron Diffraction Method. Materia Japan, 2016, 55, 8-14.	0.1	1
394	Spin–orbit torque generated by a ferromagnet/a metallic glass bilayer. Applied Physics Express, 2020, 13, 053002.	1.1	1
395	Dynamic Restoration Mechanism of a Fe3Al Based Alloy During Elevated Temperature Deformation. Materials Research Society Symposia Proceedings, 1994, 364, 255.	0.1	0
396	Local Structure Analysis of Metallic Glasses by Angstrom Beam Electron Diffraction Using Aberration Corrected STEM. Nihon Kessho Gakkaishi, 2011, 53, 326-331.	0.0	0

#	Article	IF	CITATIONS
397	Enzyme-Free Electrochemical Glucose Sensors Prepared by Dealloying Pd-Ni-P Metallic Glasses. Advances in Materials Science and Engineering, 2014, 2014, 1-6.	1.0	Ο
398	B22-O-12In Situ Atomic Scale Observation of Grain Rotation Mediated by Grain Boundary Dislocations. Microscopy (Oxford, England), 2015, 64, i52.2-i52.	0.7	0
399	Metallic Classes. SpringerBriefs in the Mathematics of Materials, 2016, , 9-14.	0.3	Ο