Navid Freidoonimehr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3760474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Review on the Effect of Temporal Geometric Variations of the Coronary Arteries on the Wall Shear Stress and Pressure Drop. Journal of Biomechanical Engineering, 2022, 144, .	1.3	6
2	Effect of artery curvature on the coronary fractional flow reserve. Physics of Fluids, 2021, 33, .	4.0	6
3	A novel technique towards investigating wall shear stress within the stent struts using particle image velocimetry. Experiments in Fluids, 2021, 62, 1.	2.4	2
4	Effect of shape of the stenosis on the hemodynamics of a stenosed coronary artery. Physics of Fluids, 2021, 33, .	4.0	24
5	Transitional turbulent flow in a stenosed coronary artery with a physiological pulsatile flow. International Journal for Numerical Methods in Biomedical Engineering, 2020, 36, e3347.	2.1	22
6	An experimental model for pressure drop evaluation in a stenosed coronary artery. Physics of Fluids, 2020, 32, .	4.0	20
7	Analytical approximation of MHD nano-fluid flow induced by a stretching permeable surface using Buongiorno's model. Ain Shams Engineering Journal, 2018, 9, 525-536.	6.1	13
8	Effect of Heat Transfer on the First and Second Law Efficiency Analysis and Optimization of an Air-standard Atkinson Cycle. High Temperature, 2018, 56, 433-438.	1.0	0
9	EULERIAN SOLUTION OF SUBCOOLED FLOW BOILING OF NANOFLUID WATER-Al2O3 IN A SINUSOIDAL VERTICAL CHANNEL. Journal of Porous Media, 2018, 21, 65-81.	1.9	0
10	Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet. Ain Shams Engineering Journal, 2017, 8, 77-85.	6.1	127
11	Exact-solution of entropy generation for MHD nanofluid flow induced by a stretching/shrinking sheet with transpiration: Dual solution. Advanced Powder Technology, 2017, 28, 671-685.	4.1	26
12	Analytical approximation of heat and mass transfer in MHD non-Newtonian nanofluid flow over a stretching sheet with convective surface boundary conditions. International Journal of Biomathematics, 2017, 10, 1750008.	2.9	8
13	Analytical Modeling of MHD Flow over a Permeable Rotating Disk in the Presence of Soret and Dufour Effects: Entropy Analysis. Entropy, 2016, 18, 131.	2.2	21
14	Comment on "Effects of thermophoresis and Brownian motion on nanofluid heat transfer and entropy generation―by M. Mahmoodi, Sh. Kandelousi, Journal of Molecular Liquids, 211 (2015) 15–24. Journal of Molecular Liquids, 2016, 216, 99-102.	4.9	11
15	MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction. Advanced Powder Technology, 2016, 27, 742-749.	4.1	123
16	Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction. Energy, 2016, 94, 100-109.	8.8	39
17	Study of Nonlinear MHD Tribological Squeeze Film at Generalized Magnetic Reynolds Numbers Using DTM. PLoS ONE, 2015, 10, e0135004.	2.5	26
18	Analysis of entropy generation in an MHD flow over a rotating porous disk with variable physical properties. International Journal of Exergy, 2015, 16, 481.	0.4	26

#	Article	IF	CITATIONS
19	Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface. Advanced Powder Technology, 2015, 26, 542-552.	4.1	217
20	Predictor homotopy analysis method for nanofluid flow through expanding or contracting gaps with permeable walls. International Journal of Biomathematics, 2015, 08, 1550050.	2.9	17
21	Second law of thermodynamics analysis of hydro-magnetic nano-fluid slip flow over a stretching permeable surface. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37, 1245-1256.	1.6	22
22	Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid. International Journal of Thermal Sciences, 2015, 87, 136-145.	4.9	168
23	Dual Solutions for MHD Jeffery–Hamel Nano-Fluid Flow in Non-parallel Walls Using Predictor Homotopy Analysis Method. Journal of Applied Fluid Mechanics, 2015, 8, 911-919.	0.2	22
24	Double Diffusive Magnetohydrodynamic (MHD) Mixed Convective Slip Flow along a Radiating Moving Vertical Flat Plate with Convective Boundary Condition. PLoS ONE, 2014, 9, e109404.	2.5	13
25	Analytical Investigation of Laminar Viscoelastic Fluid Flow over a Wedge in the Presence of Buoyancy Force Effects. Abstract and Applied Analysis, 2014, 2014, 1-11.	0.7	9
26	Analytical Modelling of Three-Dimensional Squeezing Nanofluid Flow in a Rotating Channel on a Lower Stretching Porous Wall. Mathematical Problems in Engineering, 2014, 2014, 1-14.	1.1	44
27	Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects. Ain Shams Engineering Journal, 2014, 5, 901-912.	6.1	207
28	Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration. Meccanica, 2014, 49, 469-482.	2.0	185
29	Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid. Powder Technology, 2014, 267, 256-267.	4.2	225
30	Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel. Applied Mathematics and Mechanics (English Edition), 2014, 35, 831-848.	3.6	124
31	Analysis of Entropy Generation in MHD Stagnation-Point Flow in Porous Media with Heat Transfer. International Journal for Computational Methods in Engineering Science and Mechanics, 2014, 15, 345-355.	2.1	29
32	Mixed Convective Heat Transfer for MHD Viscoelastic Fluid Flow over a Porous Wedge with Thermal Radiation. Advances in Mechanical Engineering, 2014, 6, 735939.	1.6	126
33	First and Second-Law Efficiency Analysis and ANN Prediction of a Diesel Cycle with Internal Irreversibility, Variable Specific Heats, Heat Loss, and Friction Considerations. Advances in Mechanical Engineering, 2014, 6, 359872.	1.6	8
34	Parametric analysis and optimization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm. Energy, 2013, 55, 497-510.	8.8	190
35	Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. International Journal of Heat and Mass Transfer, 2013, 62, 515-525.	4.8	621