Saumendra N Sarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3760388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human placental trophoblasts confer viral resistance to recipient cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12048-12053.	3.3	398
2	Novel roles of TLR3 tyrosine phosphorylation and PI3 kinase in double-stranded RNA signaling. Nature Structural and Molecular Biology, 2004, 11, 1060-1067.	3.6	336
3	Transcriptional signaling by double-stranded RNA: role of TLR3. Cytokine and Growth Factor Reviews, 2005, 16, 1-14.	3.2	240
4	Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 1β Modulates Host Innate Immune Response by Antagonizing IRF3 Activation. Journal of Virology, 2010, 84, 1574-1584.	1.5	227
5	Antiviral Activity of Human OASL Protein Is Mediated by Enhancing Signaling of the RIG-I RNA Sensor. Immunity, 2014, 40, 936-948.	6.6	201
6	Gasdermin D Restrains Type I Interferon Response to Cytosolic DNA by Disrupting Ionic Homeostasis. Immunity, 2018, 49, 413-426.e5.	6.6	187
7	STING Contributes to Antiglioma Immunity via Triggering Type I IFN Signals in the Tumor Microenvironment. Cancer Immunology Research, 2014, 2, 1199-1208.	1.6	185
8	Differential Activation of the Transcription Factor IRF1ÂUnderlies the Distinct Immune Responses Elicited by Type I and Type III Interferons. Immunity, 2019, 51, 451-464.e6.	6.6	179
9	Crystal Structure of the 2′-Specific and Double-Stranded RNA-Activated Interferon-Induced Antiviral Protein 2′-5′-Oligoadenylate Synthetase. Molecular Cell, 2003, 12, 1173-1185.	4.5	153
10	Respiratory syncytial virus infection enhances <i>Pseudomonas aeruginosa</i> biofilm growth through dysregulation of nutritional immunity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1642-1647.	3.3	144
11	Novel functions of proteins encoded by viral stress-inducible genes. , 2004, 103, 245-259.		142
12	ATR kinase inhibitor AZD6738 potentiates CD8+ T cell–dependent antitumor activity following radiation. Journal of Clinical Investigation, 2018, 128, 3926-3940.	3.9	136
13	Growth Arrest by the Antitumor Steroidal Lactone Withaferin A in Human Breast Cancer Cells Is Associated with Down-regulation and Covalent Binding at Cysteine 303 of β-Tubulin. Journal of Biological Chemistry, 2014, 289, 1852-1865.	1.6	106
14	Double-stranded RNA Signaling by Toll-like Receptor 3 Requires Specific Tyrosine Residues in Its Cytoplasmic Domain. Journal of Biological Chemistry, 2003, 278, 4393-4396.	1.6	102
15	The Nature of the Catalytic Domain of 2′-5′-Oligoadenylate Synthetases. Journal of Biological Chemistry, 1999, 274, 25535-25542.	1.6	95
16	PKC alpha regulates Sendai virus-mediated interferon induction through HDAC6 and β-catenin. EMBO Journal, 2011, 30, 4838-4849.	3.5	88
17	Oncolytic Viruses Engineered to Enforce Leptin Expression Reprogram Tumor-Infiltrating T Cell Metabolism and Promote Tumor Clearance. Immunity, 2019, 51, 548-560.e4.	6.6	88
18	OASL—a new player in controlling antiviral innate immunity. Current Opinion in Virology, 2015, 12, 15-19.	2.6	81

SAUMENDRA N SARKAR

#	Article	IF	CITATIONS
19	Innate immune signaling through differential RIPK1 expression promote tumor progression in head and neck squamous cell carcinoma. Carcinogenesis, 2016, 37, 522-529.	1.3	75
20	Oligoadenylate-Synthetase-Family Protein OASL Inhibits Activity of the DNA Sensor cGAS during DNA Virus Infection to Limit Interferon Production. Immunity, 2019, 50, 51-63.e5.	6.6	74
21	A Specific Isozyme of 2′-5′ Oligoadenylate Synthetase Is a Dual Function Proapoptotic Protein of the Bcl-2 Family. Journal of Biological Chemistry, 2001, 276, 25447-25455.	1.6	70
22	Adenosine Deaminase Acting on RNA 1 Limits RIG-I RNA Detection and Suppresses IFN Production Responding to Viral and Endogenous RNAs. Journal of Immunology, 2014, 193, 3436-3445.	0.4	69
23	Enzymatic Activity of 2′–5′-Oligoadenylate Synthetase Is Impaired by Specific Mutations that Affect Oligomerization of the Protein. Journal of Biological Chemistry, 1997, 272, 33220-33226.	1.6	64
24	Enzymatic Characteristics of Recombinant Medium Isozyme of 2′-5′ Oligoadenylate Synthetase. Journal of Biological Chemistry, 1999, 274, 1848-1855.	1.6	64
25	RAD51AP1 Is an Essential Mediator of Alternative Lengthening of Telomeres. Molecular Cell, 2019, 76, 11-26.e7.	4.5	62
26	MOV10 Provides Antiviral Activity against RNA Viruses by Enhancing RIG-I–MAVS-Independent IFN Induction. Journal of Immunology, 2016, 196, 3877-3886.	0.4	60
27	Structural and functional analysis reveals that human OASL binds dsRNA to enhance RIG-I signaling. Nucleic Acids Research, 2015, 43, 5236-5248.	6.5	57
28	IRF1 Inhibits Antitumor Immunity through the Upregulation of PD-L1 in the Tumor Cell. Cancer Immunology Research, 2019, 7, 1258-1266.	1.6	56
29	Schizophrenia interactome with 504 novel protein–protein interactions. NPJ Schizophrenia, 2016, 2, 16012.	2.0	54
30	High-Throughput Screening for TLR3–IFN Regulatory Factor 3 Signaling Pathway Modulators Identifies Several Antipsychotic Drugs as TLR Inhibitors. Journal of Immunology, 2010, 184, 5768-5776.	0.4	50
31	Human Â-defensin 3 promotes NF-ÂB-mediated CCR7 expression and anti-apoptotic signals in squamous cell carcinoma of the head and neck. Carcinogenesis, 2011, 32, 168-174.	1.3	50
32	Cell Growth Regulatory and Antiviral Effects of the P69 Isozyme of 2â^'5 (A) Synthetase. Virology, 2000, 266, 319-328.	1.1	49
33	Two Tyrosine Residues of Toll-like Receptor 3 Trigger Different Steps of NF-κB Activation. Journal of Biological Chemistry, 2007, 282, 3423-3427.	1.6	47
34	Focal Adhesion Kinase Is a Component of Antiviral RIG-I-like Receptor Signaling. Cell Host and Microbe, 2012, 11, 153-166.	5.1	43
35	Retinoic Acid-induced Gene-I (RIG-I) Associates with Nucleotide-binding Oligomerization Domain-2 (NOD2) to Negatively Regulate Inflammatory Signaling. Journal of Biological Chemistry, 2011, 286, 28574-28583.	1.6	42
36	Endomembrane targeting of human OAS1 p46 augments antiviral activity. ELife, 2021, 10, .	2.8	41

SAUMENDRA N SARKAR

#	Article	IF	CITATIONS
37	Production, Purification, and Characterization of Recombinant 2′,5′-Oligoadenylate Synthetases. Methods, 1998, 15, 233-242.	1.9	36
38	ADAP2 Is an Interferon Stimulated Gene That Restricts RNA Virus Entry. PLoS Pathogens, 2015, 11, e1005150.	2.1	36
39	Effect of fenvalerate, a pyrethroid insecticide on membrane fluidity. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1147, 137-142.	1.4	33
40	Regulation of Mitochondrial Antiviral Signaling (MAVS) Expression and Signaling by the Mitochondria-associated Endoplasmic Reticulum Membrane (MAM) Protein Gp78. Journal of Biological Chemistry, 2014, 289, 1604-1616.	1.6	33
41	2′-5′-Oligoadenylate Synthetase-Like Protein Inhibits Respiratory Syncytial Virus Replication and Is Targeted by the Viral Nonstructural Protein 1. Journal of Virology, 2015, 89, 10115-10119.	1.5	33
42	Induction of interferon-stimulated genes by Simian virus 40 T antigens. Virology, 2010, 406, 202-211.	1.1	32
43	Defective NF-κB Signaling in Metastatic Head and Neck Cancer Cells Leads to Enhanced Apoptosis by Double-Stranded RNA. Cancer Research, 2012, 72, 45-55.	0.4	31
44	Hitching RIG to action. Nature Immunology, 2005, 6, 1074-1076.	7.0	30
45	Simian Virus 40 Large T Antigen Induces IFN-Stimulated Genes through ATR Kinase. Journal of Immunology, 2014, 192, 5933-5942.	0.4	30
46	Helicase-Driven Activation of NFκB-COX2 Pathway Mediates the Immunosuppressive Component of dsRNA-Driven Inflammation in the Human Tumor Microenvironment. Cancer Research, 2018, 78, 4292-4302.	0.4	30
47	Effects of Mutating Specific Residues Present Near the Amino Terminus of 2′–5′-Oligoadenylate Synthetase. Journal of Biological Chemistry, 1997, 272, 15452-15458.	1.6	28
48	Role of IRF4 in IFN-Stimulated Gene Induction and Maintenance of Kaposi Sarcoma–Associated Herpesvirus Latency in Primary Effusion Lymphoma Cells. Journal of Immunology, 2013, 191, 1476-1485.	0.4	26
49	Production and Purification of Recombinant 2â€~-5â€~ Oligoadenylate Synthetase and Its Mutants Using the Baculovirus System. Biochemistry, 1998, 37, 3824-3830.	1.2	23
50	Differential Effects of Phenethyl Isothiocyanate and <scp>D,L</scp> -Sulforaphane on TLR3 Signaling. Journal of Immunology, 2013, 190, 4400-4407.	0.4	17
51	Protective role of STING against gliomagenesis: Rational use of STING agonist in anti-glioma immunotherapy. Oncolmmunology, 2015, 4, e999523.	2.1	16
52	Identification of the Substrate-binding Sites of 2′-5′-Oligoadenylate Synthetase. Journal of Biological Chemistry, 2002, 277, 24321-24330.	1.6	13
53	Downregulation of IRF4 induces lytic reactivation of KSHV in primary effusion lymphoma cells. Virology, 2014, 458-459, 4-10.	1.1	13
54	Mathematical modeling of the cGAS pathway reveals robustness of DNA sensing to TREX1 feedback. Journal of Theoretical Biology, 2019, 462, 148-157.	0.8	13

#	Article	IF	CITATIONS
55	Crisscross Enzymatic Reaction between the Two Molecules in the Active Dimeric P69 Form of the 2′-5′ Oligodenylate Synthetase. Journal of Biological Chemistry, 2002, 277, 44760-44764.	1.6	11
56	Differential activity of interferon-α8 promoter is regulated by Oct-1 and a SNP that dictates prognosis of glioma. Oncolmmunology, 2012, 1, 487-492.	2.1	11
57	Integration of epidemiology, immunobiology, and translational research for brain tumors. Annals of the New York Academy of Sciences, 2013, 1284, 17-23.	1.8	7
58	Examining Dynamic Emergent Properties of the DNA Sensing Pathway. IFAC-PapersOnLine, 2018, 51, 112-113.	0.5	5
59	Natural Mutations in a 2â€~â~'5â€~ Oligoadenylate Synthetase Transgene Revealed Residues Essential for Enzyme Activityâ€. Biochemistry, 2005, 44, 6837-6843.	1.2	4
60	The Proapoptotic 9-2 Isozyme of 2-5 (A) Synthetase Cannot Substitute for the Sperm Functions of the Proapoptotic Protein, Bax. Journal of Interferon and Cytokine Research, 2002, 22, 199-206.	0.5	2
61	Assays for the Interferon-Induced Enzyme 2 â€ 2 ,5â€ 2 Oligoadenylate Synthetases. , 2005, 116, 81-101.		1
62	Could boosting the oligoadenylate synthetase-like pathway bring a new era of antiviral therapy?. Future Virology, 2014, 9, 1011-1014.	0.9	1
63	What is the oligoadenylate synthetases-like protein and does it have therapeutic potential for influenza?. Expert Review of Respiratory Medicine, 2015, 9, 1-3.	1.0	1
64	Molecular Cloning and Functional Characterization of Mouse Innate Immune Sensor RIG-I. Cytology and Genetics, 2019, 53, 325-329.	0.2	0