
Eric R Tkaczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3760312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Checklist for Evaluation of Image-Based Artificial Intelligence Reports in Dermatology. JAMA Dermatology, 2022, 158, 90.	2.0	71
2	Expanding Personalized, Data-Driven Dermatology: Leveraging Digital Health Technology and Machine Learning to Improve Patient Outcomes. JID Innovations, 2022, 2, 100105.	1.2	9
3	<i>In Vivo</i> reflectance confocal microscopy of cutaneous acute graftâ€versusâ€host disease: concordance with histopathology and interobserver reproducibility of a glossary with representative images. Journal of the European Academy of Dermatology and Venereology, 2022, , .	1.3	1
4	Artificial intelligence recognition of cutaneous chronic <scp>graftâ€versusâ€host</scp> disease by a deep learning neural network. British Journal of Haematology, 2022, 197, .	1.2	6
5	Association of Leukocyte Adhesion and Rolling in Skin With Patient Outcomes After Hematopoietic Cell Transplantation Using Noninvasive Reflectance Confocal Videomicroscopy. JAMA Dermatology, 2022, , .	2.0	1
6	Bedside Reflectance Confocal Videomicroscopy of Immune Cell Motion in Skin Provides Blood Cancer Insights. , 2022, , .		0
7	Longitudinal tracking of skin dynamic stiffness to quantify evolution of sclerosis in chronic graft-versus-host disease. Bone Marrow Transplantation, 2021, 56, 989-991.	1.3	7
8	Baseline Photos and Confident Annotation Improve Automated Detection of Cutaneous Graft-Versus-Host Disease. Clinical Hematology International, 2021, 3, 108.	0.7	3
9	National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IIa. The 2020 Clinical Implementation and Early Diagnosis Working Group Report. Transplantation and Cellular Therapy, 2021, 27, 545-557.	0.6	72
10	National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IIb. The 2020 Preemptive Therapy Working Group Report. Transplantation and Cellular Therapy, 2021, 27, 632-641.	0.6	21
11	Methods to Assess Disease Activity and Severity in Cutaneous Chronic Graft-versus-Host Disease: A Critical Literature Review. Transplantation and Cellular Therapy, 2021, 27, 738-746.	0.6	4
12	Guideline for in vivo assessment of adherent and rolling leukocytes in human skin microvasculature via reflectance confocal videomicroscopy. Microcirculation, 2021, 28, e12725.	1.0	4
13	Optimal Biomechanical Parameters for Measuring Sclerotic Chronic Graft-Versus-Host Disease. JID Innovations, 2021, 1, 100037.	1.2	5
14	Measurement of stress buildâ€up of ion exchange strengthened lithium aluminosilicate glass. Journal of the American Ceramic Society, 2020, 103, 2407-2420.	1.9	4
15	Noninvasive, Real-Time Microscopic Imaging Reveals Microvascular Changes in Cutaneous Acute Graft-Versus-Host Disease. Biology of Blood and Marrow Transplantation, 2020, 26, S53-S54.	2.0	0
16	Individual cell motion in healthy human skin microvasculature by reflectance confocal video microscopy. Microcirculation, 2020, 27, e12621.	1.0	8
17	Diffuse Painful Plaques in the Setting of Chronic Lymphocytic Leukemia. , 2020, 106, E18-E20.		0
18	Post-transplant Leukocyte Motion in Human Skin Microvasculature by Noninvasive Reflectance Confocal Video Microscopy. , 2020, , .		0

ERIC R TKACZYK

#	Article	IF	CITATIONS
19	Colonic and perianal ulceration exhibiting vacuolar interface dermatitis in the setting of HIV. Clinical Case Reports (discontinued), 2019, 7, 1478-1480.	0.2	0
20	miRâ€10aâ€5p is increased in atopic dermatitis and has capacity to inhibit keratinocyte proliferation. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2146-2156.	2.7	31
21	Features of cutaneous acute graftâ€versusâ€host disease by reflectance confocal microscopy. British Journal of Dermatology, 2019, 181, 829-831.	1.4	6
22	Crowdsourcing to delineate skin affected by chronic graftâ€vsâ€host disease. Skin Research and Technology, 2019, 25, 572-577.	0.8	5
23	The Anatomic Distribution of Skin Involvement in Patients with Incident Chronic Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2019, 25, 279-286.	2.0	6
24	Reproducibility of the durometer and myoton devices for skin stiffness measurement in healthy subjects. Skin Research and Technology, 2019, 25, 289-293.	0.8	24
25	Non-invasive measurement of sclerosis in cutaneous cGVHD patients with the handheld device Myoton: a cross-sectional study. Bone Marrow Transplantation, 2019, 54, 616-619.	1.3	9
26	Noninvasive Microscopic Imaging Reveals Increased Leukocyte Adhesion and Rolling in Skin of Acute Graft-Versus-Host Disease Patients Compared to Post-Transplant Controls. Blood, 2019, 134, 4533-4533.	0.6	2
27	Interobserver Reproducibility of the Myoton and Durometer Devices to Measure Skin Stiffness and Hardness in Chronic Cutaneous Graft-Versus-Host Disease Patients. Blood, 2019, 134, 4515-4515.	0.6	6
28	Key Histopathology Features of Cutaneous Acute Graft-Versus-Host Disease Can be Detected Noninvasively. Blood, 2019, 134, 3278-3278.	0.6	2
29	Diagnostic Potential of Five Different Biomechanical Parameters to Detect Sclerotic Cutaneous Graft-Versus-Host Disease. Blood, 2019, 134, 2002-2002.	0.6	0
30	Sclerotic Chronic Graft-Versus-Host Disease Severity Can be Assessed via Biomechanical Properties of Skin. Biology of Blood and Marrow Transplantation, 2018, 24, S198-S199.	2.0	0
31	Optical differential temperature measurement with beat frequency phase fluorometry. Applied Optics, 2018, 57, 8053.	0.9	0
32	Overcoming human disagreement assessing erythematous lesion severity on 3D photos of chronic graft-versus-host disease. Bone Marrow Transplantation, 2018, 53, 1356-1358.	1.3	9
33	Methods of Melanoma Detection. , 2018, , 39-85.		0
34	Subcutaneous scalp nodule as the presenting symptom of systemic light-chain amyloidosis. Dermatology Practical and Conceptual, 2018, 8, 184-187.	0.5	2
35	Bringing Biophotonics to Dermatology Patients: Experiences of a New Cutaneous Imaging Clinic. , 2018,		0
36	Segmentation of skin lesions in chronic graft versus host disease photographs with fully		1

convolutional networks., 2018,,.

Eric R Tkaczyk

#	Article	IF	CITATIONS
37	Drug-induced linear IgA bullous dermatosis in a patient with a vancomycin-impregnated cement spacer. Cutis, 2018, 101, 293-296.	0.4	3
38	A Rapidly Growing Facial Mass: Challenge. American Journal of Dermatopathology, 2017, 39, 457-458.	0.3	0
39	miR-146b Probably Assists miRNA-146a inÂthe Suppression of Keratinocyte Proliferation and Inflammatory ResponsesÂin Psoriasis. Journal of Investigative Dermatology, 2017, 137, 1945-1954.	0.3	68
40	Erythematous plaques and papules on a premature infant. Journal of the American Academy of Dermatology, 2017, 76, e111-e112.	0.6	0
41	A Rapidly Growing Facial Mass: Answer. American Journal of Dermatopathology, 2017, 39, e71-e72.	0.3	0
42	Innovations and Developments in Dermatologic Non-invasive Optical Imaging and Potential Clinical Applications. Acta Dermato-Venereologica, 2017, Suppl 218, 5-13.	0.6	24
43	Interference filter tilting to detect a polycyclic aromatic hydrocarbon at the second harmonic of wavelength modulation frequency. Applied Optics, 2017, 56, 3155.	2.1	1
44	Pre-administration of PepFect6-microRNA-146a nanocomplexes inhibits inflammatory responses in keratinocytes and in a mouse model of irritant contact dermatitis. Journal of Controlled Release, 2016, 235, 195-204.	4.8	42
45	An Erythematous papular eruption in a woman with Crohn disease treated with infliximab. Dermatology Online Journal, 2016, 22, .	0.2	Ο
46	Vectorial laws of refraction and reflection using the cross product and dot product. Optics Letters, 2012, 37, 972.	1.7	15
47	Gaussian beam reflection and refraction by a spherical or parabolic surface: comparison of vectorial-law calculation with lens approximation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 2144.	0.8	2
48	Reversible Leukoencephalopathy—A Differential Diagnosis Beyond Posterior Reversible Encephalopathy Syndrome. Neuro-Ophthalmology, 2012, 36, 158-164.	0.4	0
49	Cataract diagnosis by measurement of backscattered light. Optics Letters, 2011, 36, 4707.	1.7	1
50	Multiphoton flow cytometry strategies and applications. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 775-788.	1.1	27
51	MICROFLUIDIC DROPLET CONSISTENCY MONITORING AND ENCAPSULATED CELL DETECTION VIA LASER EXCITATION. Journal of Mechanics in Medicine and Biology, 2011, 11, 1-14.	0.3	14
52	Kinetic properties of ASC protein aggregation in epithelial cells. Journal of Cellular Physiology, 2010, 222, 738-747.	2.0	45
53	Quantitative differentiation of dyes with overlapping one-photon spectra by femtosecond pulse-shaping. Journal of Luminescence, 2010, 130, 29-34.	1.5	5
54	Fiber-optic multiphoton flow cytometry in whole blood and in vivo. Journal of Biomedical Optics, 2010, 15, 047004.	1.4	33

Eric R Tkaczyk

#	Article	IF	CITATIONS
55	Control of Two-photon Fluorescence of Common Dyes and Conjugated Dyes. Journal of Fluorescence, 2009, 19, 517-532.	1.3	9
56	Two-photon in vivo flow cytometry using a fiber probe. Proceedings of SPIE, 2009, 7173, 7173011-71730110.	0.8	3
57	Physicochemical properties of blue fluorescent protein determined via molecular dynamics simulation. Biopolymers, 2008, 89, 1136-1143.	1.2	8
58	In vivo monitoring of multiple circulating cell populations using two-photon flow cytometry. Optics Communications, 2008, 281, 888-894.	1.0	51
59	Control of the blue fluorescent protein with advanced evolutionary pulse shaping. Biochemical and Biophysical Research Communications, 2008, 376, 733-737.	1.0	13
60	Quantitative two-photon flow cytometry—in vitro and in vivo. Journal of Biomedical Optics, 2008, 13, 034008.	1.4	30
61	Extended cavity laser enhanced two-photon flow cytometry. Journal of Biomedical Optics, 2008, 13, 041319.	1.4	11
62	Enhanced Two-Photon In Vivo Flow Cytometry with an Extended Cavity Laser. , 2007, , .		1
63	Two-photon, two-color in vivo flow cytometry to noninvasively monitor multiple circulating cell lines. , 2007, , .		6
64	Deconvolution of Skin Images with Multivariate Curve Resolution. , 2007, , .		0
65	Increasing two-photon fluorescence signals by coherent control. , 2006, , .		1
66	Moment-based Description for Assumption-free Single-shot Measurement of Femtosecond Laser Pulse Parameters via Two-photon-induced Photocurrents. , 2006, , .		0
67	In vivo monitoring of two circulating cell lines using two-color two-photon cytometry. , 2006, , .		1
68	Vibrations-determined properties of green fluorescent protein. Biopolymers, 2005, 78, 140-146.	1.2	3