Hao Qi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3759915/publications.pdf

Version: 2024-02-01

38	1,715	17 h-index	35
papers	citations		g-index
42	42	42	3313 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Systems-Level Analysis of the Global Regulatory Mechanism of CodY in Lactococcus lactis Metabolism and Nisin Immunity Modulation. Applied and Environmental Microbiology, 2022, 88, AEM0184721.	1.4	2
2	Toehold-controlled ligation and transcription for accurate COVID-19 genotyping. Analytical Biochemistry, 2022, 654, 114803.	1.1	1
3	Carbon tubes from biomass with prominent adsorption performance for paraquat. Chemosphere, 2021, 262, 127797.	4.2	27
4	Precipitation of Magnetic Iron Oxide Induced by Sporosarcina pasteurii Cells. Microorganisms, 2021, 9, 331.	1.6	4
5	Accurate genotyping of fragmented DNA using a toehold assisted padlock probe. Biosensors and Bioelectronics, $2021, 179, 113079$.	5.3	9
6	Sensitive analysis of single nucleotide variation by Cas13d orthologs, EsCas13d and RspCas13d. Biotechnology and Bioengineering, 2021, 118, 3037-3045.	1.7	8
7	Efficient Solar-Driven Water Purification Based on Biochar with Multi-Level Pore Bundle Structure for Preparation of Drinking Water. Foods, 2021, 10, 3087.	1.9	3
8	Low-Bias Manipulation of DNA Oligo Pool for Robust Data Storage. ACS Synthetic Biology, 2020, 9, 3344-3352.	1.9	22
9	A mixed culture of bacterial cells enables an economic DNA storage on a large scale. Communications Biology, 2020, 3, 416.	2.0	21
10	Emerging Methods for Efficient and Extensive Incorporation of Non-canonical Amino Acids Using Cell-Free Systems. Frontiers in Bioengineering and Biotechnology, 2020, 8, 863.	2.0	14
11	Construction of a system for single-stranded DNA isolation. Biotechnology Letters, 2020, 42, 1663-1671.	1.1	3
12	Dynamic Genome Editing Using In Vivo Synthesized Donor ssDNA in Escherichia coli. Cells, 2020, 9, 467.	1.8	2
13	Current and Emerging Methods for the Synthesis of Single-Stranded DNA. Genes, 2020, 11, 116.	1.0	33
14	MRC: A High Density Encoding Method for Pratical DNA-based Storage. , 2020, , .		2
15	Improvement in the Orthogonal Protein Degradation in Escherichia coli by Truncated mf-ssrA Tag. Transactions of Tianjin University, 2019, 25, 357-363.	3.3	5
16	Constructing Yeast Chimeric Pathways To Boost Lipophilic Terpene Synthesis. ACS Synthetic Biology, 2019, 8, 724-733.	1.9	21
17	Biogrouting of hydraulic fill fine sands for reclamation projects. Marine Georesources and Geotechnology, 2019, 37, 212-222.	1.2	14
18	Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nature Communications, 2018, 9, 1933.	5 . 8	118

#	Article	IF	Citations
19	In Situ Real-Time Study on Dynamics of Microbially Induced Calcium Carbonate Precipitation at a Single-Cell Level. Environmental Science & Environment	4.6	57
20	Construction of integrated gene logic-chip. Nature Nanotechnology, 2018, 13, 933-940.	15.6	42
21	Solventâ€Controlled Phase Transition of a Co ^{II} â€Organic Framework: From Achiral to Chiral and Two to Three Dimensions. Chemistry - A European Journal, 2017, 23, 7990-7996.	1.7	111
22	Orthogonal Ribosome Biofirewall. ACS Synthetic Biology, 2017, 6, 2108-2117.	1.9	11
23	Genome-wide landscape of position effects on heterogeneous gene expression in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2017, 10, 189.	6.2	53
24	In vitrospatially organizing the differentiation in individual multicellular stem cell aggregates. Critical Reviews in Biotechnology, 2016, 36, 20-31.	5.1	24
25	Multigene Pathway Engineering with Regulatory Linkers (M-PERL). ACS Synthetic Biology, 2016, 5, 1535-1545.	1.9	11
26	DNA-Based Bulk Hydrogel Materials and Biomedical Application. Journal of Nanotechnology in Engineering and Medicine, 2015, 6, .	0.8	1
27	Robust orthogonal recombination system for versatile genomic elements rearrangement in yeast Saccharomyces Cerevisiae. Scientific Reports, 2015, 5, 15249.	1.6	13
28	Engineering Artificial Machines from Designable DNA Materials for Biomedical Applications. Tissue Engineering - Part B: Reviews, 2015, 21, 288-297.	2.5	5
29	Modularization of genetic elements promotes synthetic metabolic engineering. Biotechnology Advances, 2015, 33, 1412-1419.	6.0	12
30	Stem Cells: Hepatic Differentiation of Human Embryonic Stem Cells as Microscaled Multilayered Colonies Leading to Enhanced Homogeneity and Maturation (Small 21/2014). Small, 2014, 10, 4310-4310.	5 . 2	18
31	Engineering physical microenvironment for stem cell based regenerative medicine. Drug Discovery Today, 2014, 19, 763-773.	3.2	53
32	DNA-directed self-assembly of shape-controlled hydrogels. Nature Communications, 2013, 4, 2275.	5.8	238
33	CONTROLLED ASYMMETRICAL DIFFERENTIATION OF MOUSE EMBRYOID BODIES IN MICROWELLS WITH DESIGNED HETEROGENEOUS BIOCHEMICAL FEATURES. Journal of Mechanics in Medicine and Biology, 2013, 13, 1340003.	0.3	1
34	Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels. Advanced Functional Materials, 2012, 22, 2027-2039.	7.8	618
35	Patterned Differentiation of Individual Embryoid Bodies in Spatially Organized 3D Hybrid Microgels. Advanced Materials, 2010, 22, 5276-5281.	11.1	107
36	Stem Cells: Patterned Differentiation of Individual Embryoid Bodies in Spatially Organized 3D Hybrid Microgels (Adv. Mater. 46/2010). Advanced Materials, 2010, 22, 5220-5220.	11.1	0

#	Article	IF	CITATIONS
37	Ribosomal Protein S1 Is not Essential for the trans-translation Machinery. Journal of Molecular Biology, 2007, 368, 845-852.	2.0	27
38	Efficient In Vitro Fullâ€Senseâ€Codons Protein Synthesis. Advanced Biology, 0, , 2200023.	1.4	1