List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/375982/publications.pdf Version: 2024-02-01

TVIED F LACKS

#	Article	IF	CITATIONS
1	A GATA4-regulated secretory program suppresses tumors through recruitment of cytotoxic CD8 T cells. Nature Communications, 2022, 13, 256.	12.8	8
2	Therapeutic avenues for cancer neuroscience: translational frontiers and clinical opportunities. Lancet Oncology, The, 2022, 23, e62-e74.	10.7	36
3	Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature, 2022, 601, 85-91.	27.8	117
4	Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell, 2022, 185, 1905-1923.e25.	28.9	108
5	Deciphering the immunopeptidome in vivo reveals new tumour antigens. Nature, 2022, 607, 149-155.	27.8	38
6	Inducible de novo expression of neoantigens in tumor cells and mice. Nature Biotechnology, 2021, 39, 64-73.	17.5	32
7	Pan-cancer Transcriptomic Predictors of Perineural Invasion Improve Occult Histopathologic Detection. Clinical Cancer Research, 2021, 27, 2807-2815.	7.0	12
8	The CCL2-CCR2 astrocyte-cancer cell axis in tumor extravasation at the brain. Science Advances, 2021, 7, .	10.3	40
9	Radiation-induced neoantigens broaden the immunotherapeutic window of cancers with low mutational loads. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	62
10	Protocol for single-cell ATAC sequencing using combinatorial indexing in mouse lung adenocarcinoma. STAR Protocols, 2021, 2, 100583.	1.2	9
11	Mitochondrial apoptotic priming is a key determinant of cell fate upon p53 restoration. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
12	<i>Rlf–Mycl</i> Gene Fusion Drives Tumorigenesis and Metastasis in a Mouse Model of Small Cell Lung Cancer. Cancer Discovery, 2021, 11, 3214-3229.	9.4	24
13	Live cell tagging tracking and isolation for spatial transcriptomics using photoactivatable cell dyes. Nature Communications, 2021, 12, 4995.	12.8	25
14	The CD155/TIGIT axis promotes and maintains immune evasion in neoantigen-expressing pancreatic cancer. Cancer Cell, 2021, 39, 1342-1360.e14.	16.8	119
15	Low neoantigen expression and poor T-cell priming underlie early immune escape in colorectal cancer. Nature Cancer, 2021, 2, 1071-1085.	13.2	57
16	Measuring kinetics and metastatic propensity of CTCs by blood exchange between mice. Nature Communications, 2021, 12, 5680.	12.8	18
17	Antigen dominance hierarchies shape TCF1+ progenitor CD8 TÂcell phenotypes in tumors. Cell, 2021, 184, 4996-5014.e26.	28.9	84
18	Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1+ CD8+ TÂcells in tumor-draining lymph nodes. Immunity, 2021, 54, 2338-2353.e6.	14.3	111

#	Article	IF	CITATIONS
19	Epigenomic State Transitions Characterize Tumor Progression in Mouse Lung Adenocarcinoma. Cancer Cell, 2020, 38, 212-228.e13.	16.8	140
20	Emergence of a High-Plasticity Cell State during Lung Cancer Evolution. Cancer Cell, 2020, 38, 229-246.e13.	16.8	210
21	Keap1 mutation renders lung adenocarcinomas dependent on Slc33a1. Nature Cancer, 2020, 1, 589-602.	13.2	44
22	Urinary detection of lung cancer in mice via noninvasive pulmonary protease profiling. Science Translational Medicine, 2020, 12, .	12.4	58
23	Endocrine-Exocrine Signaling Drives Obesity-Associated Pancreatic Ductal Adenocarcinoma. Cell, 2020, 181, 832-847.e18.	28.9	77
24	Dissecting cell-type-specific metabolism in pancreatic ductal adenocarcinoma. ELife, 2020, 9, .	6.0	61
25	Anti-Tumor TCF1+ CD8 T Cells are Functionally Diverse and Evolve During Tumorigenesis and Progression. American Journal of Clinical Pathology, 2020, 154, S5-S6.	0.7	0
26	A dominant-negative effect drives selection of <i>TP53</i> missense mutations in myeloid malignancies. Science, 2019, 365, 599-604.	12.6	265
27	Notum produced by Paneth cells attenuates regeneration of aged intestinal epithelium. Nature, 2019, 571, 398-402.	27.8	166
28	ldentification of DHODH as a therapeutic target in small cell lung cancer. Science Translational Medicine, 2019, 11, .	12.4	89
29	Commensal Microbiota Promote Lung Cancer Development via γδT Cells. Cell, 2019, 176, 998-1013.e16.	28.9	592
30	Optofluidic real-time cell sorter for longitudinal CTC studies in mouse models of cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2232-2236.	7.1	51
31	Rebalancing Protein Homeostasis Enhances Tumor Antigen Presentation. Clinical Cancer Research, 2019, 25, 6392-6405.	7.0	37
32	IL-33 Signaling Alters Regulatory T Cell Diversity in Support of Tumor Development. Cell Reports, 2019, 29, 2998-3008.e8.	6.4	53
33	MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature, 2019, 574, 696-701.	27.8	563
34	Colonoscopy-based colorectal cancer modeling in mice with CRISPR–Cas9 genome editing and organoid transplantation. Nature Protocols, 2018, 13, 217-234.	12.0	74
35	lsoform-specific deletion of PKM2 constrains tumor initiation in a mouse model of soft tissue sarcoma. Cancer & Metabolism, 2018, 6, 6.	5.0	24
36	A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature, 2017, 545, 355-359.	27.8	265

#	Article	IF	CITATIONS
37	In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nature Biotechnology, 2017, 35, 569-576.	17.5	248
38	Dicer loss and recovery induce an oncogenic switch driven by transcriptional activation of the oncofetal Imp1–3 family. Genes and Development, 2017, 31, 674-687.	5.9	16
39	Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nature Medicine, 2017, 23, 1362-1368.	30.7	462
40	Survival of pancreatic cancer cells lacking KRAS function. Nature Communications, 2017, 8, 1090.	12.8	131
41	Driving Rel-iant Tregs toward an Identity Crisis. Immunity, 2017, 47, 391-393.	14.3	5
42	Anatomically and Functionally Distinct Lung Mesenchymal Populations Marked by Lgr5 and Lgr6. Cell, 2017, 170, 1149-1163.e12.	28.9	304
43	Lung Adenocarcinoma Distally Rewires Hepatic Circadian Homeostasis. Cell, 2016, 165, 896-909.	28.9	195
44	Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma. Genes and Development, 2016, 30, 1020-1033.	5.9	122
45	Tissue of origin dictates branched-chain amino acid metabolism in mutant <i>Kras</i> -driven cancers. Science, 2016, 353, 1161-1165.	12.6	447
46	Mutational landscape of <i>EGFR-</i> , <i>MYC-</i> , and <i>Kras-</i> driven genetically engineered mouse models of lung adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6409-E6417.	7.1	158
47	Circadian Rhythm Disruption Promotes Lung Tumorigenesis. Cell Metabolism, 2016, 24, 324-331.	16.2	366
48	A Modular Assembly Platform for Rapid Generation of DNA Constructs. Scientific Reports, 2016, 6, 16836.	3.3	54
49	<scp>PKM</scp> 2, cancer metabolism, and the road ahead. EMBO Reports, 2016, 17, 1721-1730.	4.5	384
50	Stromal Expression of miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development. Cancer Discovery, 2016, 6, 188-201.	9.4	122
51	Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer. Cell Metabolism, 2016, 23, 517-528.	16.2	616
52	Assessment of ABT-263 activity across a cancer cell line collection leads to a potent combination therapy for small-cell lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1288-96.	7.1	110
53	Applications of the CRISPR–Cas9 system in cancer biology. Nature Reviews Cancer, 2015, 15, 387-393.	28.4	340
54	Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nature Medicine, 2015, 21, 1163-1171.	30.7	349

#	Article	IF	CITATIONS
55	Regulatory T Cells in Tumor-Associated Tertiary Lymphoid Structures Suppress Anti-tumor T Cell Responses. Immunity, 2015, 43, 579-590.	14.3	360
56	Foxa2 and Cdx2 cooperate with Nkx2-1 to inhibit lung adenocarcinoma metastasis. Genes and Development, 2015, 29, 1850-1862.	5.9	87
57	Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology, 2014, 32, 551-553.	17.5	823
58	Genetic and Clonal Dissection of Murine Small Cell Lung Carcinoma Progression by Genome Sequencing. Cell, 2014, 156, 1298-1311.	28.9	241
59	Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature, 2014, 516, 428-431.	27.8	353
60	Small RNA combination therapy for lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3553-61.	7.1	210
61	A Conditional System to Specifically Link Disruption of Protein-Coding Function with Reporter Expression in Mice. Cell Reports, 2014, 7, 2078-2086.	6.4	9
62	CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature, 2014, 514, 380-384.	27.8	673
63	Autophagy Is Required for Glucose Homeostasis and Lung Tumor Maintenance. Cancer Discovery, 2014, 4, 914-927.	9.4	450
64	LincRNA-p21 Activates p21 In cis to Promote Polycomb Target Gene Expression and to Enforce the G1/S Checkpoint. Molecular Cell, 2014, 54, 777-790.	9.7	412
65	KRAS and YAP1 Converge to Regulate EMT and Tumor Survival. Cell, 2014, 158, 171-184.	28.9	608
66	Expression of tumour-specific antigens underlies cancer immunoediting. Nature, 2012, 482, 405-409.	27.8	478
67	Nuclear factor I/B is an oncogene in small cell lung cancer. Genes and Development, 2011, 25, 1470-1475.	5.9	142
68	Suppression of lung adenocarcinoma progression by Nkx2-1. Nature, 2011, 473, 101-104.	27.8	383
69	Endogenous T Cell Responses to Antigens Expressed in Lung Adenocarcinomas Delay Malignant Tumor Progression. Cancer Cell, 2011, 19, 72-85.	16.8	209
70	Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature, 2010, 468, 572-575.	27.8	255
71	Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009, 462, 108-112.	27.8	2,707
72	Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nature Protocols, 2009, 4, 1064-1072	12.0	711

#	Article	IF	CITATIONS
73	Coordinate Loss of a MicroRNA Mir 145 and a Protein-Coding Gene RPS14 Cooperate in the Pathogenesis of 5q- Syndrome Blood, 2009, 114, 947-947.	1.4	7
74	Regulated Expression of a Tumor-Associated Antigen Reveals Multiple Levels of T-Cell Tolerance in a Mouse Model of Lung Cancer. Cancer Research, 2008, 68, 9459-9468.	0.9	45
75	A spatially and temporally restricted mouse model of soft tissue sarcoma. Nature Medicine, 2007, 13, 992-997.	30.7	274
76	Restoration of p53 function leads to tumour regression in vivo. Nature, 2007, 445, 661-665.	27.8	1,662
77	An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nature Genetics, 2005, 37, 48-55.	21.4	392
78	The Differential Effects of Mutant p53 Alleles on Advanced Murine Lung Cancer. Cancer Research, 2005, 65, 10280-10288.	0.9	488
79	The Role of K-ras Signaling in Erythropoiesis In Vivo Blood, 2005, 106, 3136-3136.	1.4	0
80	Mutant p53 Gain of Function in Two Mouse Models of Li-Fraumeni Syndrome. Cell, 2004, 119, 847-860.	28.9	1,140
81	Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell, 2003, 4, 437-450.	16.8	2,150
82	Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2948-2953.	7.1	176
83	Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nature Genetics, 2001, 29, 25-33.	21.4	284
84	Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature, 2001, 410, 1111-1116.	27.8	1,060
85	Analysis of lung tumor initiation and progression using conditional expression of oncogenic <i>K-ras</i> . Genes and Development, 2001, 15, 3243-3248.	5.9	1,663
86	Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nature Genetics, 2000, 26, 109-113.	21.4	379
87	An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nature Cell Biology, 2000, 2, 563-568.	10.3	312
88	Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature, 2000, 407, 645-648.	27.8	656
89	In Vitro and In Vivo Effects of a Farnesyltransferase Inhibitor onNf1-Deficient Hematopoietic Cells. Blood, 1999, 94, 2469-2476.	1.4	81
90	Myeloid Malignancies Induced by Alkylating Agents in Nf1 Mice. Blood, 1999, 93, 3617-3623.	1.4	55

#	Article	IF	CITATIONS
91	A bumper crop of cancer genes. Nature Genetics, 1999, 23, 253-254.	21.4	9
92	The retinoblastoma gene family in differentiation and development. Oncogene, 1999, 18, 7873-7882.	5.9	362
93	Insights into cancer from transgenic mouse models. Journal of Pathology, 1999, 187, 43-60.	4.5	113
94	Mouse Models of Tumor Development in Neurofibromatosis Type 1 . Science, 1999, 286, 2172-2176.	12.6	441
95	Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/â^') mice. Nature Genetics, 1998, 18, 360-364.	21.4	274
96	p21 Is a Critical CDK2 Regulator Essential for Proliferation Control in Rb-deficient Cells. Journal of Cell Biology, 1998, 141, 503-514.	5.2	145
97	A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nature Genetics, 1997, 15, 281-284.	21.4	336
98	Deletion of p21 cannot substitute for p53 loss in rescue of mdm2 null lethality. Nature Genetics, 1997, 16, 336-337.	21.4	16
99	p53 and treatment of bladder cancer. Nature, 1997, 385, 124-125.	27.8	10
100	TUMOR SUPPRESSOR GENE MUTATIONS IN MICE. Annual Review of Genetics, 1996, 30, 603-636.	7.6	104
101	Lessons from thep53 mutant mouse. Journal of Cancer Research and Clinical Oncology, 1996, 122, 319-327.	2.5	33
102	Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nature Genetics, 1996, 12, 144-148.	21.4	555
103	Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature, 1996, 379, 88-91.	27.8	2,223
104	Cell-cycle control and its watchman. Nature, 1996, 381, 643-644.	27.8	278
105	A subset of p53-deficient embryos exhibit exencephaly. Nature Genetics, 1995, 10, 175-180.	21.4	544
106	Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature, 1995, 377, 552-557.	27.8	1,218
107	Vascular system defects and neuronal apoptosis in mice lacking Ras GTPase-activating protein. Nature, 1995, 377, 695-701.	27.8	357
108	Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nature Genetics, 1994, 7, 353-361.	21.4	731

#	Article	IF	CITATIONS
109	Cooperative tumorigenic effects of germline mutations in Rb and p53. Nature Genetics, 1994, 7, 480-484.	21.4	379
110	p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature, 1994, 371, 72-74.	27.8	625
111	Sunburn and p53 in the onset of skin cancer. Nature, 1994, 372, 773-776.	27.8	1,724
112	Tumor spectrum analysis in p53-mutant mice. Current Biology, 1994, 4, 1-7.	3.9	1,903
113	p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature, 1993, 362, 847-849.	27.8	2,829
114	Effects of an Rb mutation in the mouse. Nature, 1992, 359, 295-300.	27.8	1,730