
## NaÃ-r RodrÃ-guez-Hornedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3759715/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF                | CITATIONS          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 1  | Gas-Assisted Cocrystal Desublimation. Crystal Growth and Design, 2022, 22, 1528-1532.                                                                                                                                                    | 3.0               | 1                  |
| 2  | Synchronization of Cocrystal Dissolution and Drug Precipitation to Sustain Drug Supersaturation.<br>Molecular Pharmaceutics, 2022, 19, 2765-2775.                                                                                        | 4.6               | 7                  |
| 3  | Stability of Pharmaceutical Co-Crystals at Humid Conditions Can Be Predicted. Pharmaceutics, 2021, 13, 433.                                                                                                                              | 4.5               | 11                 |
| 4  | Co-Crystal Screening by Vapor Sorption of Organic Solvents. Crystal Growth and Design, 2021, 21, 4445-4455.                                                                                                                              | 3.0               | 4                  |
| 5  | Cocrystal Solubility Advantage and Dose/Solubility Ratio Diagrams: A Mechanistic Approach To<br>Selecting Additives and Controlling Dissolution–Supersaturation–Precipitation Behavior. Molecular<br>Pharmaceutics, 2020, 17, 4286-4301. | 4.6               | 19                 |
| 6  | The role of pH and dose/solubility ratio on cocrystal dissolution, drug supersaturation and precipitation. European Journal of Pharmaceutical Sciences, 2020, 152, 105422.                                                               | 4.0               | 30                 |
| 7  | Cocrystal Solubility Advantage Diagrams as a Means to Control Dissolution, Supersaturation, and<br>Precipitation. Molecular Pharmaceutics, 2019, 16, 3887-3895.                                                                          | 4.6               | 35                 |
| 8  | Posaconazole Cocrystal with Superior Solubility and Dissolution Behavior. Crystal Growth and Design, 2019, 19, 6592-6602.                                                                                                                | 3.0               | 47                 |
| 9  | Exploring Bioequivalence of Dexketoprofen Trometamol Drug Products with the Gastrointestinal Simulator (GIS) and Precipitation Pathways Analyses. Pharmaceutics, 2019, 11, 122.                                                          | 4.5               | 17                 |
| 10 | An Expandable Mechanopharmaceutical Device (1): Measuring the Cargo Capacity of Macrophages in a<br>Living Organism. Pharmaceutical Research, 2019, 36, 12.                                                                              | 3.5               | 8                  |
| 11 | Mechanistic Analysis of Cocrystal Dissolution, Surface pH, and Dissolution Advantage as a Guide for<br>Rational Selection. Journal of Pharmaceutical Sciences, 2019, 108, 243-251.                                                       | 3.3               | 12                 |
| 12 | Cocrystals Mitigate Negative Effects of High pH on Solubility and Dissolution of a Basic Drug. Crystal<br>Growth and Design, 2018, 18, 1358-1366.                                                                                        | 3.0               | 42                 |
| 13 | Evaluation and optimized selection of supersaturating drug delivery systems of posaconazole (BCS) Tj ETQq1 1 (<br>Journal of Pharmaceutical Sciences, 2018, 115, 258-269.                                                                | ).784314 r<br>4.0 | gBT /Overloc<br>43 |
| 14 | Mechanistic Basis of Cocrystal Dissolution Advantage. Journal of Pharmaceutical Sciences, 2018, 107, 380-389.                                                                                                                            | 3.3               | 17                 |
| 15 | Understanding the Differences Between Cocrystal and Salt Aqueous Solubilities. Journal of<br>Pharmaceutical Sciences, 2018, 107, 113-120.                                                                                                | 3.3               | 34                 |
| 16 | Linking the Gastrointestinal Behavior of Ibuprofen with the Systemic Exposure between and within<br>Humans—Part 1: Fasted State Conditions. Molecular Pharmaceutics, 2018, 15, 5454-5467.                                                | 4.6               | 21                 |
| 17 | Tadalafil–Malonic Acid Cocrystal: Physicochemical Characterization, pH-Solubility, and<br>Supersaturation Studies. Crystal Growth and Design, 2018, 18, 4378-4387.                                                                       | 3.0               | 31                 |
| 18 | Multidrug Cocrystal of Anticonvulsants: Influence of Strong Intermolecular Interactions on<br>Physiochemical Properties. Crystal Growth and Design, 2017, 17, 5012-5016.                                                                 | 3.0               | 58                 |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Advanced Drug<br>Delivery Reviews, 2016, 101, 143-166.                                                                              | 13.7 | 160       |
| 20 | Turning Liquid Propofol into Solid (without Freezing It): Thermodynamic Characterization of<br>Pharmaceutical Cocrystals Built with a Liquid Drug. Crystal Growth and Design, 2016, 16, 6547-6555.                  | 3.0  | 20        |
| 21 | Mechanistic Analysis of Cocrystal Dissolution as a Function of pH and Micellar Solubilization.<br>Molecular Pharmaceutics, 2016, 13, 1030-1046.                                                                     | 4.6  | 36        |
| 22 | Cocrystal Solubilization in Biorelevant Media and its Prediction from Drug Solubilization. Journal of Pharmaceutical Sciences, 2015, 104, 4153-4163.                                                                | 3.3  | 21        |
| 23 | Cocrystal Transition Points: Role of Cocrystal Solubility, Drug Solubility, and Solubilizing Agents.<br>Molecular Pharmaceutics, 2015, 12, 3535-3546.                                                               | 4.6  | 47        |
| 24 | Pharmaceutical cocrystals and poorly soluble drugs. International Journal of Pharmaceutics, 2013, 453, 101-125.                                                                                                     | 5.2  | 501       |
| 25 | Tailoring aqueous solubility of a highly soluble compound via cocrystallization: effect of coformer ionization, pHmax and solute–solvent interactions. CrystEngComm, 2012, 14, 4801.                                | 2.6  | 71        |
| 26 | pH-Dependent Solubility of Indomethacin–Saccharin and Carbamazepine–Saccharin Cocrystals in<br>Aqueous Media. Molecular Pharmaceutics, 2012, 9, 2605-2612.                                                          | 4.6  | 97        |
| 27 | Polymorphs, Salts, and Cocrystals: What's in a Name?. Crystal Growth and Design, 2012, 12, 2147-2152.                                                                                                               | 3.0  | 767       |
| 28 | Correction for Polymorphs, Salts and Cocrystals: What's in a Name?. Crystal Growth and Design, 2012, 12, 4290-4291.                                                                                                 | 3.0  | 17        |
| 29 | Dependence of cocrystal formation and thermodynamic stability on moisture sorption by amorphous polymer. CrystEngComm, 2011, 13, 1181-1189.                                                                         | 2.6  | 29        |
| 30 | Engineering cocrystal thermodynamic stability and eutectic points by micellar solubilization and ionization. CrystEngComm, 2011, 13, 5409.                                                                          | 2.6  | 32        |
| 31 | Engineering cocrystal solubility, stability, and pHmax by micellar solubilization. Journal of Pharmaceutical Sciences, 2011, 100, 5219-5234.                                                                        | 3.3  | 42        |
| 32 | Transformation Pathways of Cocrystal Hydrates When Coformer Modulates Water Activity. Journal of Pharmaceutical Sciences, 2010, 99, 3977-3985.                                                                      | 3.3  | 37        |
| 33 | Cocrystal Eutectic Constants and Prediction of Solubility Behavior. Crystal Growth and Design, 2010, 10, 1028-1032.                                                                                                 | 3.0  | 117       |
| 34 | Effect of Micellar Solubilization on Cocrystal Solubility and Stability. Crystal Growth and Design, 2010, 10, 2050-2053.                                                                                            | 3.0  | 52        |
| 35 | Solvent Effects on the Crystallization and Preferential Nucleation of Carbamazepine Anhydrous<br>Polymorphs: A Molecular Recognition Perspective. Organic Process Research and Development, 2009,<br>13, 1291-1300. | 2.7  | 41        |
| 36 | Factors that influence the spontaneous formation of pharmaceutical cocrystals by simply mixing solid reactants. CrystEngComm, 2009, 11, 493-500.                                                                    | 2.6  | 70        |

NaÃr RodrÃguez-Hornedo

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Role of Cocrystal and Solution Chemistry on the Formation and Stability of Cocrystals with Different Stoichiometry. Crystal Growth and Design, 2009, 9, 889-897.                                                      | 3.0  | 148       |
| 38 | Cocrystals and Salts of Gabapentin: pH Dependent Cocrystal Stability and Solubility. Crystal Growth and Design, 2009, 9, 378-385.                                                                                     | 3.0  | 164       |
| 39 | Analysis of 50 Crystal Structures Containing Carbamazepine Using the <i>Materials</i> Module of <i>Mercury CSD</i> . Crystal Growth and Design, 2009, 9, 1869-1888.                                                   | 3.0  | 161       |
| 40 | Solubility Advantage of Pharmaceutical Cocrystals. Crystal Growth and Design, 2009, 9, 2252-2264.                                                                                                                     | 3.0  | 709       |
| 41 | Understanding and Predicting the Effect of Cocrystal Components and pH on Cocrystal Solubility.<br>Crystal Growth and Design, 2009, 9, 3976-3988.                                                                     | 3.0  | 147       |
| 42 | A rapid thermal method for cocrystal screening. CrystEngComm, 2008, 10, 665.                                                                                                                                          | 2.6  | 259       |
| 43 | Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. CrystEngComm, 2008, 10, 856.                                                      | 2.6  | 325       |
| 44 | pH-Induced Nanosegregation of Ritonavir to Lyotropic Liquid Crystal of Higher Solubility than<br>Crystalline Polymorphs. Molecular Pharmaceutics, 2008, 5, 956-967.                                                   | 4.6  | 13        |
| 45 | Solvent Systems for Crystallization and Polymorph Selection. , 2007, , 53-109.                                                                                                                                        |      | 12        |
| 46 | Mechanisms by Which Moisture Generates Cocrystals. Molecular Pharmaceutics, 2007, 4, 360-372.                                                                                                                         | 4.6  | 115       |
| 47 | Cocrystals:  Molecular Design of Pharmaceutical Materials. Molecular Pharmaceutics, 2007, 4, 299-300.                                                                                                                 | 4.6  | 61        |
| 48 | Phase Solubility Diagrams of Cocrystals Are Explained by Solubility Product and Solution Complexation. Crystal Growth and Design, 2006, 6, 592-600.                                                                   | 3.0  | 278       |
| 49 | Reaction Crystallization of Pharmaceutical Molecular Complexes. Molecular Pharmaceutics, 2006, 3, 362-367.                                                                                                            | 4.6  | 263       |
| 50 | Cocrystal Formation during Cogrinding and Storage is Mediated by Amorphous Phase. Pharmaceutical Research, 2006, 23, 2381-2392.                                                                                       | 3.5  | 215       |
| 51 | General principles of pharmaceutical solid polymorphism A supramolecular perspective. Advanced<br>Drug Delivery Reviews, 2004, 56, 241-274.                                                                           | 13.7 | 373       |
| 52 | General Principles of Pharmaceutical Solid Polymorphism. A Supramolecular Perspective. ChemInform, 2004, 35, no.                                                                                                      | 0.0  | 0         |
| 53 | Fourier transform infrared spectroscopy for the analysis of neutralizer-carbomer and<br>surfactant-carbomer interactions in aqueous, hydroalcoholic, and anhydrous gel formulations. AAPS<br>Journal, 2004, 6, 61-67. | 4.4  | 26        |
| 54 | Crystal Engineering of the Composition of Pharmaceutical Phases:  Multiple-Component Crystalline<br>Solids Involving Carbamazepine. Crystal Growth and Design, 2003, 3, 909-919.                                      | 3.0  | 493       |

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effect of initial buffer composition on pH changes during far-from-equilibrium freezing of sodium phosphate buffer solutions. Pharmaceutical Research, 2001, 18, 90-97. | 3.5 | 143       |
| 56 | Growth and morphology of L-alanine crystals: influence of additive adsorption. Pharmaceutical<br>Research, 1993, 10, 1008-1014.                                         | 3.5 | 24        |
| 57 | NUCLEATION AND CRYSTAL GROWTH EFFECTS ON PARTICLE CHARACTERISTICS. Particulate Science and Technology, 1992, 10, 33-35.                                                 | 2.1 | Ο         |
| 58 | Phase transition and heterogeneous/epitaxial nucleation of hydrated and anhydrous theophylline crystals. International Journal of Pharmaceutics, 1992, 85, 149-162.     | 5.2 | 109       |
| 59 | Crystal growth kinetics of theophylline monohydrate. Pharmaceutical Research, 1991, 08, 643-648.                                                                        | 3.5 | 23        |