NaÃ-r RodrÃ-guez-Hornedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3759715/publications.pdf

Version: 2024-02-01

59 papers

6,658 citations

33 h-index 56 g-index

60 all docs

60 does citations

60 times ranked

3667 citing authors

#	Article	IF	CITATIONS
1	Polymorphs, Salts, and Cocrystals: What's in a Name?. Crystal Growth and Design, 2012, 12, 2147-2152.	3.0	767
2	Solubility Advantage of Pharmaceutical Cocrystals. Crystal Growth and Design, 2009, 9, 2252-2264.	3.0	709
3	Pharmaceutical cocrystals and poorly soluble drugs. International Journal of Pharmaceutics, 2013, 453, 101-125.	5.2	501
4	Crystal Engineering of the Composition of Pharmaceutical Phases:  Multiple-Component Crystalline Solids Involving Carbamazepine. Crystal Growth and Design, 2003, 3, 909-919.	3.0	493
5	General principles of pharmaceutical solid polymorphism A supramolecular perspective. Advanced Drug Delivery Reviews, 2004, 56, 241-274.	13.7	373
6	Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. CrystEngComm, 2008, 10, 856.	2.6	325
7	Phase Solubility Diagrams of Cocrystals Are Explained by Solubility Product and Solution Complexation. Crystal Growth and Design, 2006, 6, 592-600.	3.0	278
8	Reaction Crystallization of Pharmaceutical Molecular Complexes. Molecular Pharmaceutics, 2006, 3, 362-367.	4.6	263
9	A rapid thermal method for cocrystal screening. CrystEngComm, 2008, 10, 665.	2.6	259
10	Cocrystal Formation during Cogrinding and Storage is Mediated by Amorphous Phase. Pharmaceutical Research, 2006, 23, 2381-2392.	3.5	215
11	Cocrystals and Salts of Gabapentin: pH Dependent Cocrystal Stability and Solubility. Crystal Growth and Design, 2009, 9, 378-385.	3.0	164
12	Analysis of 50 Crystal Structures Containing Carbamazepine Using the <i>Materials</i> Module of <i>Mercury CSD</i> Crystal Growth and Design, 2009, 9, 1869-1888.	3.0	161
13	Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Advanced Drug Delivery Reviews, 2016, 101, 143-166.	13.7	160
14	Role of Cocrystal and Solution Chemistry on the Formation and Stability of Cocrystals with Different Stoichiometry. Crystal Growth and Design, 2009, 9, 889-897.	3.0	148
15	Understanding and Predicting the Effect of Cocrystal Components and pH on Cocrystal Solubility. Crystal Growth and Design, 2009, 9, 3976-3988.	3.0	147
16	Effect of initial buffer composition on pH changes during far-from-equilibrium freezing of sodium phosphate buffer solutions. Pharmaceutical Research, 2001, 18, 90-97.	3.5	143
17	Cocrystal Eutectic Constants and Prediction of Solubility Behavior. Crystal Growth and Design, 2010, 10, 1028-1032.	3.0	117
18	Mechanisms by Which Moisture Generates Cocrystals. Molecular Pharmaceutics, 2007, 4, 360-372.	4.6	115

#	Article	IF	CITATIONS
19	Phase transition and heterogeneous/epitaxial nucleation of hydrated and anhydrous theophylline crystals. International Journal of Pharmaceutics, 1992, 85, 149-162.	5.2	109
20	pH-Dependent Solubility of Indomethacin–Saccharin and Carbamazepine–Saccharin Cocrystals in Aqueous Media. Molecular Pharmaceutics, 2012, 9, 2605-2612.	4.6	97
21	Tailoring aqueous solubility of a highly soluble compound via cocrystallization: effect of coformer ionization, pHmax and solute–solvent interactions. CrystEngComm, 2012, 14, 4801.	2.6	71
22	Factors that influence the spontaneous formation of pharmaceutical cocrystals by simply mixing solid reactants. CrystEngComm, 2009, 11, 493-500.	2.6	70
23	Cocrystals:  Molecular Design of Pharmaceutical Materials. Molecular Pharmaceutics, 2007, 4, 299-300.	4.6	61
24	Multidrug Cocrystal of Anticonvulsants: Influence of Strong Intermolecular Interactions on Physiochemical Properties. Crystal Growth and Design, 2017, 17, 5012-5016.	3.0	58
25	Effect of Micellar Solubilization on Cocrystal Solubility and Stability. Crystal Growth and Design, 2010, 10, 2050-2053.	3.0	52
26	Cocrystal Transition Points: Role of Cocrystal Solubility, Drug Solubility, and Solubilizing Agents. Molecular Pharmaceutics, 2015, 12, 3535-3546.	4.6	47
27	Posaconazole Cocrystal with Superior Solubility and Dissolution Behavior. Crystal Growth and Design, 2019, 19, 6592-6602.	3.0	47
28	Evaluation and optimized selection of supersaturating drug delivery systems of posaconazole (BCS) Tj ETQq0 0 Journal of Pharmaceutical Sciences, 2018, 115, 258-269.	0 rgBT /O\ 4.0	verlock 10 Tf 5
29	Engineering cocrystal solubility, stability, and pHmax by micellar solubilization. Journal of Pharmaceutical Sciences, 2011, 100, 5219-5234.	3.3	42
30	Cocrystals Mitigate Negative Effects of High pH on Solubility and Dissolution of a Basic Drug. Crystal Growth and Design, 2018, 18, 1358-1366.	3.0	42
31	Solvent Effects on the Crystallization and Preferential Nucleation of Carbamazepine Anhydrous Polymorphs: A Molecular Recognition Perspective. Organic Process Research and Development, 2009, 13, 1291-1300.	2.7	41
32	Transformation Pathways of Cocrystal Hydrates When Coformer Modulates Water Activity. Journal of Pharmaceutical Sciences, 2010, 99, 3977-3985.	3.3	37
33	Mechanistic Analysis of Cocrystal Dissolution as a Function of pH and Micellar Solubilization. Molecular Pharmaceutics, 2016, 13, 1030-1046.	4.6	36
34	Cocrystal Solubility Advantage Diagrams as a Means to Control Dissolution, Supersaturation, and Precipitation. Molecular Pharmaceutics, 2019, 16, 3887-3895.	4.6	35
35	Understanding the Differences Between Cocrystal and Salt Aqueous Solubilities. Journal of Pharmaceutical Sciences, 2018, 107, 113-120.	3.3	34
36	Engineering cocrystal thermodynamic stability and eutectic points by micellar solubilization and ionization. CrystEngComm, 2011, 13, 5409.	2.6	32

#	Article	IF	Citations
37	Tadalafil–Malonic Acid Cocrystal: Physicochemical Characterization, pH-Solubility, and Supersaturation Studies. Crystal Growth and Design, 2018, 18, 4378-4387.	3.0	31
38	The role of pH and dose/solubility ratio on cocrystal dissolution, drug supersaturation and precipitation. European Journal of Pharmaceutical Sciences, 2020, 152, 105422.	4.0	30
39	Dependence of cocrystal formation and thermodynamic stability on moisture sorption by amorphous polymer. CrystEngComm, 2011, 13, 1181-1189.	2.6	29
40	Fourier transform infrared spectroscopy for the analysis of neutralizer-carbomer and surfactant-carbomer interactions in aqueous, hydroalcoholic, and anhydrous gel formulations. AAPS Journal, 2004, 6, 61-67.	4.4	26
41	Growth and morphology of L-alanine crystals: influence of additive adsorption. Pharmaceutical Research, 1993, 10, 1008-1014.	3.5	24
42	Crystal growth kinetics of theophylline monohydrate. Pharmaceutical Research, 1991, 08, 643-648.	3.5	23
43	Cocrystal Solubilization in Biorelevant Media and its Prediction from Drug Solubilization. Journal of Pharmaceutical Sciences, 2015, 104, 4153-4163.	3.3	21
44	Linking the Gastrointestinal Behavior of Ibuprofen with the Systemic Exposure between and within Humansâ€"Part 1: Fasted State Conditions. Molecular Pharmaceutics, 2018, 15, 5454-5467.	4.6	21
45	Turning Liquid Propofol into Solid (without Freezing It): Thermodynamic Characterization of Pharmaceutical Cocrystals Built with a Liquid Drug. Crystal Growth and Design, 2016, 16, 6547-6555.	3.0	20
46	Cocrystal Solubility Advantage and Dose/Solubility Ratio Diagrams: A Mechanistic Approach To Selecting Additives and Controlling Dissolution–Supersaturation–Precipitation Behavior. Molecular Pharmaceutics, 2020, 17, 4286-4301.	4.6	19
47	Correction for Polymorphs, Salts and Cocrystals: What's in a Name?. Crystal Growth and Design, 2012, 12, 4290-4291.	3.0	17
48	Mechanistic Basis of Cocrystal Dissolution Advantage. Journal of Pharmaceutical Sciences, 2018, 107, 380-389.	3.3	17
49	Exploring Bioequivalence of Dexketoprofen Trometamol Drug Products with the Gastrointestinal Simulator (GIS) and Precipitation Pathways Analyses. Pharmaceutics, 2019, 11, 122.	4.5	17
50	pH-Induced Nanosegregation of Ritonavir to Lyotropic Liquid Crystal of Higher Solubility than Crystalline Polymorphs. Molecular Pharmaceutics, 2008, 5, 956-967.	4.6	13
51	Solvent Systems for Crystallization and Polymorph Selection. , 2007, , 53-109.		12
52	Mechanistic Analysis of Cocrystal Dissolution, Surface pH, and Dissolution Advantage as a Guide for Rational Selection. Journal of Pharmaceutical Sciences, 2019, 108, 243-251.	3.3	12
53	Stability of Pharmaceutical Co-Crystals at Humid Conditions Can Be Predicted. Pharmaceutics, 2021, 13, 433.	4.5	11
54	An Expandable Mechanopharmaceutical Device (1): Measuring the Cargo Capacity of Macrophages in a Living Organism. Pharmaceutical Research, 2019, 36, 12.	3.5	8

#	Article	IF	CITATIONS
55	Synchronization of Cocrystal Dissolution and Drug Precipitation to Sustain Drug Supersaturation. Molecular Pharmaceutics, 2022, 19, 2765-2775.	4.6	7
56	Co-Crystal Screening by Vapor Sorption of Organic Solvents. Crystal Growth and Design, 2021, 21, 4445-4455.	3.0	4
57	Gas-Assisted Cocrystal Desublimation. Crystal Growth and Design, 2022, 22, 1528-1532.	3.0	1
58	NUCLEATION AND CRYSTAL GROWTH EFFECTS ON PARTICLE CHARACTERISTICS. Particulate Science and Technology, 1992, 10, 33-35.	2.1	0
59	General Principles of Pharmaceutical Solid Polymorphism. A Supramolecular Perspective. ChemInform, 2004, 35, no.	0.0	0