
Johan W M Heemskerk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3759388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tyrosine Kinase Inhibitor Sunitinib Delays Platelet-Induced Coagulation: Additive Effects of Aspirin. Thrombosis and Haemostasis, 2022, 122, 092-104.	3.4	11
2	Effects of Platelet Agonists and Priming on the Formation of Platelet Populations. Thrombosis and Haemostasis, 2022, 122, 726-738.	3.4	14
3	Nutrition Phytochemicals Affecting Platelet Signaling and Responsiveness: Implications for Thrombosis and Hemostasis. Thrombosis and Haemostasis, 2022, 122, 879-894.	3.4	11
4	Role of Tyrosine Kinase Syk in Thrombus Stabilisation at High Shear. International Journal of Molecular Sciences, 2022, 23, 493.	4.1	7
5	Multiparameter platelet function analysis of bleeding patients with a prolonged platelet function analyser closure time. British Journal of Haematology, 2022, 196, 1388-1400.	2.5	2
6	Ultra-high-throughput Ca2+ assay in platelets to distinguish ITAM-linked and G-protein-coupled receptor activation. IScience, 2022, 25, 103718.	4.1	8
7	Protein C or Protein S deficiency associates with paradoxically impaired plateletâ€dependent thrombus and fibrin formation under flow. Research and Practice in Thrombosis and Haemostasis, 2022, 6, e12678.	2.3	2
8	Structure-Based Cyclic Glycoprotein Ibα-Derived Peptides Interfering with von Willebrand Factor-Binding, Affecting Platelet Aggregation under Shear. International Journal of Molecular Sciences, 2022, 23, 2046.	4.1	10
9	Emerging Technologies for Understanding Platelet Diversity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 540-552.	2.4	2
10	Toward Zero Variance in Proteomics Sample Preparation: Positive-Pressure FASP in 96-Well Format (PF96) Enables Highly Reproducible, Time- and Cost-Efficient Analysis of Sample Cohorts. Journal of Proteome Research, 2022, 21, 1181-1188.	3.7	12
11	Targeting platelet-derived CXCL12 impedes arterial thrombosis. Blood, 2022, 139, 2691-2705.	1.4	13
12	Temporal Roles of Platelet and Coagulation Pathways in Collagen- and Tissue Factor-Induced Thrombus Formation. International Journal of Molecular Sciences, 2022, 23, 358.	4.1	16
13	Reversing direct factor Xa or thrombin inhibitors: Factor V addition to prothrombin complex concentrate is beneficial in vitro. Research and Practice in Thrombosis and Haemostasis, 2022, 6, e12699.	2.3	4
14	MicroRNA-26b Attenuates Platelet Adhesion and Aggregation in Mice. Biomedicines, 2022, 10, 983.	3.2	4
15	Inhibition of Src but not Syk causes weak reversal of GPVI-mediated platelet aggregation measured by light transmission aggregometry. Platelets, 2022, , 1-8.	2.3	1
16	GPVI expression is linked to platelet size, age, and reactivity. Blood Advances, 2022, 6, 4162-4173.	5.2	10
17	Molecular Mechanisms of Hemostasis, Thrombosis and Thrombo-Inflammation. International Journal of Molecular Sciences, 2022, 23, 5825.	4.1	4
18	Quantitative and qualitative changes in platelet traits of sunitinib-treated patients with renal cell carcinoma in relation to circulating sunitinib levels: a proof-of-concept study. BMC Cancer, 2022, 22, .	2.6	0

#	Article	IF	CITATIONS
19	Nonredundant Roles of Platelet Glycoprotein VI and Integrin αIIbβ3 in Fibrin-Mediated Microthrombus Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e97-e111.	2.4	22
20	Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. PLoS ONE, 2021, 16, e0244736.	2.5	12
21	Long-term platelet priming after glycoprotein VI stimulation in comparison to Protease-Activating Receptor (PAR) stimulation. PLoS ONE, 2021, 16, e0247425.	2.5	7
22	Targeted Phosphoinositides Analysis Using High-Performance Ion Chromatography-Coupled Selected Reaction Monitoring Mass Spectrometry. Journal of Proteome Research, 2021, 20, 3114-3123.	3.7	8
23	Assessment of a complete and classified platelet proteome from genome-wide transcripts of human platelets and megakaryocytes covering platelet functions. Scientific Reports, 2021, 11, 12358.	3.3	40
24	Cell-specific and divergent roles of the CD40L-CD40 axis in atherosclerotic vascular disease. Nature Communications, 2021, 12, 3754.	12.8	39
25	Multiparameter microfluidics assay of thrombus formation reveals increased sensitivity to contraction and antiplatelet agents at physiological temperature. Thrombosis Research, 2021, 203, 46-56.	1.7	13
26	Rapid Internalization and Nuclear Translocation of CCL5 and CXCL4 in Endothelial Cells. International Journal of Molecular Sciences, 2021, 22, 7332.	4.1	2
27	High fibrinogen γ′ levels in patient plasma increase clot formation at arterial and venous shear. Blood Advances, 2021, 5, 3468-3477.	5.2	9
28	Vitamin K antagonist use induces calcification and atherosclerotic plaque progression resulting in in increased hypercoagulability. European Heart Journal Open, 2021, 1, .	2.3	2
29	Comparison of inhibitory effects of irreversible and reversible Btk inhibitors on platelet function. EJHaem, 2021, 2, 685-699.	1.0	8
30	Platelet GPVI (Glycoprotein VI) and Thrombotic Complications in the Venous System. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2681-2692.	2.4	38
31	Molecular Proteomics and Signalling of Human Platelets in Health and Disease. International Journal of Molecular Sciences, 2021, 22, 9860.	4.1	19
32	Inhibition of platelet adhesion, thrombus formation, and fibrin formation by a potent αIIbβ3 integrin inhibitor from ticks. Research and Practice in Thrombosis and Haemostasis, 2021, 5, 231-242.	2.3	10
33	Platelet calcium signaling by G-protein coupled and ITAM-linked receptors regulating anoctamin-6 and procoagulant activity. Platelets, 2021, 32, 863-871.	2.3	39
34	Multiparameter Evaluation of the Platelet-Inhibitory Effects of Tyrosine Kinase Inhibitors Used for Cancer Treatment. International Journal of Molecular Sciences, 2021, 22, 11199.	4.1	6
35	Platelet Activation Mechanisms and Consequences of Immune Thrombocytopenia. Cells, 2021, 10, 3386.	4.1	35
36	Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. , 2021, 16, e0244736.		0

#	Article	IF	CITATIONS
37	Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. , 2021, 16, e0244736.		0
38	Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. , 2021, 16, e0244736.		0
39	Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. , 2021, 16, e0244736.		0
40	Increased platelet thrombus formation under flow conditions in whole blood from polycythaemia vera patients. Blood Transfusion, 2021, , .	0.4	1
41	Comparison of the GPVI inhibitors losartan and honokiol. Platelets, 2020, 31, 187-197.	2.3	21
42	Native, Intact Glucagon-Like Peptide 1 Is a Natural Suppressor of Thrombus Growth Under Physiological Flow Conditions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e65-e77.	2.4	14
43	Localized endothelialâ€based control of platelet aggregation and coagulation under flow: A proofâ€ofâ€principle vesselâ€onâ€aâ€chip study. Journal of Thrombosis and Haemostasis, 2020, 18, 931-941.	3.8	24
44	Platelet-primed interactions of coagulation and anticoagulation pathways in flow-dependent thrombus formation. Scientific Reports, 2020, 10, 11910.	3.3	21
45	Impaired iloprost-induced platelet inhibition and phosphoproteome changes in patients with confirmed pseudohypoparathyroidism type Ia, linked to genetic mutations in GNAS. Scientific Reports, 2020, 10, 11389.	3.3	16
46	Complementary roles of platelet αIIbβ3 integrin, phosphatidylserine exposure and cytoskeletal rearrangement in the release of extracellular vesicles. Atherosclerosis, 2020, 310, 17-25.	0.8	12
47	Mild hyperlipidemia in mice aggravates platelet responsiveness in thrombus formation and exploration of platelet proteome and lipidome. Scientific Reports, 2020, 10, 21407.	3.3	13
48	Flow studies on human GPVI-deficient blood under coagulating and noncoagulating conditions. Blood Advances, 2020, 4, 2953-2961.	5.2	35
49	Whole-genome sequencing of a sporadic primary immunodeficiency cohort. Nature, 2020, 583, 90-95.	27.8	148
50	Clonal hematopoietic mutations linked to platelet traits and the risk of thrombosis or bleeding. Haematologica, 2020, 105, 2020-2031.	3.5	29
51	Crystal Clots as Therapeutic Target in Cholesterol Crystal Embolism. Circulation Research, 2020, 126, e37-e52.	4.5	29
52	LIM-only protein FHL2 attenuates vascular tissue factor activity, inhibits thrombus formation in mice and FHL2 genetic variation associates with human venous thrombosis. Haematologica, 2020, 105, 1677-1685.	3.5	4
53	Platelet Membrane Receptor Proteolysis: Implications for Platelet Function. Frontiers in Cardiovascular Medicine, 2020, 7, 608391.	2.4	16
54	Does fibrin(ogen) bind to monomeric or dimeric GPVI, or not at all?. Platelets, 2019, 30, 281-289.	2.3	32

#	Article	IF	CITATIONS
55	Clinical Protocol to Prevent Thrombogenic Effect of Liver-Derived Mesenchymal Cells for Cell-Based Therapies. Cells, 2019, 8, 846.	4.1	17
56	Comparative Analysis of Microfluidics Thrombus Formation in Multiple Genetically Modified Mice: Link to Thrombosis and Hemostasis. Frontiers in Cardiovascular Medicine, 2019, 6, 99.	2.4	12
57	Impact of Deficiency of Intrinsic Coagulation Factors XI and XII on Ex Vivo Thrombus Formation and Clot Lysis. TH Open, 2019, 03, e273-e285.	1.4	7
58	Long-term vitamin k antagonist treatment induces calcification and atherosclerotic plaque progression, promoting a prethrombotic state Atherosclerosis, 2019, 287, e74-e75.	0.8	0
59	Defective Zn2+ homeostasis in mouse and human platelets with α- and δ-storage pool diseases. Scientific Reports, 2019, 9, 8333.	3.3	20
60	Role of Platelet Glycoprotein VI and Tyrosine Kinase Syk in Thrombus Formation on Collagen-Like Surfaces. International Journal of Molecular Sciences, 2019, 20, 2788.	4.1	28
61	SAT-388-How to infuse heterologous human adult liver-derived progenitor cells safely?. Journal of Hepatology, 2019, 70, e804-e805.	3.7	0
62	Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia. American Journal of Human Genetics, 2019, 104, 948-956.	6.2	45
63	Whole Blood Based Multiparameter Assessment of Thrombus Formation in Standard Microfluidic Devices to Proxy In Vivo Haemostasis and Thrombosis. Micromachines, 2019, 10, 787.	2.9	16
64	Platelet Cd40l Does Not Affect Atherogenesis, But Is A Key Player In Atherothrombosis. Atherosclerosis, 2019, 287, e48.	0.8	0
65	The Microbiota Promotes Arterial Thrombosis in Low-Density Lipoprotein Receptor-Deficient Mice. MBio, 2019, 10, .	4.1	50
66	Platelet biology and functions: new concepts and clinical perspectives. Nature Reviews Cardiology, 2019, 16, 166-179.	13.7	547
67	High-throughput elucidation of thrombus formation reveals sources of platelet function variability. Haematologica, 2019, 104, 1256-1267.	3.5	70
68	Store-operated calcium entry in thrombosis and thrombo-inflammation. Cell Calcium, 2019, 77, 39-48.	2.4	55
69	Laminar Flow-based Assays to Investigate Leukocyte Recruitment on Cultured Vascular Cells and Adherent Platelets. Journal of Visualized Experiments, 2018, , .	0.3	2
70	Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data. Scientific Reports, 2018, 8, 1300.	3.3	48
71	Suppressive Role of Tissue Factor Pathway Inhibitor-α in Platelet-Dependent Fibrin Formation under Flow Is Restricted to Low Procoagulant Strength. Thrombosis and Haemostasis, 2018, 118, 502-513.	3.4	14
72	Variable impairment of platelet functions in patients with severe, genetically linked immune deficiencies. Haematologica, 2018, 103, 540-549.	3.5	36

#	Article	IF	CITATIONS
73	Maintenance of murine platelet homeostasis by the kinase Csk and phosphatase CD148. Blood, 2018, 131, 1122-1144.	1.4	35
74	High-throughput measurement of human platelet aggregation under flow: application in hemostasis and beyond. Platelets, 2018, 29, 662-669.	2.3	27
75	Tyrosine Kinase Inhibitor Pazopanib Inhibits Platelet Procoagulant Activity in Renal Cell Carcinoma Patients. Frontiers in Cardiovascular Medicine, 2018, 5, 142.	2.4	14
76	Platelet heterogeneity in activation-induced glycoprotein shedding: functional effects. Blood Advances, 2018, 2, 2320-2331.	5.2	45
77	A synthesis approach of mouse studies to identify genes and proteins in arterial thrombosis and bleeding. Blood, 2018, 132, e35-e46.	1.4	29
78	Inhibitory mechanisms of very low–dose rivaroxaban in non–ST-elevation myocardial infarction. Blood Advances, 2018, 2, 715-730.	5.2	38
79	Integrating platelet and coagulation activation in fibrin clot formation. Research and Practice in Thrombosis and Haemostasis, 2018, 2, 450-460.	2.3	122
80	Platelet proteomics: from discovery to diagnosis. Expert Review of Proteomics, 2018, 15, 467-476.	3.0	20
81	Acquired platelet antagonism: offâ€ŧarget antiplatelet effects of malignancy treatment with tyrosine kinase inhibitors. Journal of Thrombosis and Haemostasis, 2018, 16, 1686-1699.	3.8	29
82	De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures. American Journal of Human Genetics, 2018, 103, 144-153.	6.2	36
83	AMPK-ACC signaling modulates platelet phospholipids and potentiates thrombus formation. Blood, 2018, 132, 1180-1192.	1.4	57
84	Uncoupling ITIM receptor G6b-B from tyrosine phosphatases Shp1 and Shp2 disrupts murine platelet homeostasis. Blood, 2018, 132, 1413-1425.	1.4	25
85	Congenital macrothrombocytopenia with focal myelofibrosis due to mutations in human G6b-B is rescued in humanized mice. Blood, 2018, 132, 1399-1412.	1.4	37
86	Comprehensive Cancer-Predisposition Gene Testing in an Adult Multiple Primary Tumor Series Shows a Broad Range of Deleterious Variants and Atypical Tumor Phenotypes. American Journal of Human Genetics, 2018, 103, 3-18.	6.2	46
87	Impaired mitochondrial activity explains platelet dysfunction in thrombocytopenic cancer patients undergoing chemotherapy. Haematologica, 2018, 103, 1557-1567.	3.5	24
88	Biallelic Mutation of ARHGEF18, Involved in the Determination of Epithelial Apicobasal Polarity, Causes Adult-Onset Retinal Degeneration. American Journal of Human Genetics, 2017, 100, 334-342.	6.2	26
89	Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition. Blood, 2017, 129, e1-e12.	1.4	97
90	Use of microfluidics to assess the platelet-based control of coagulation. Platelets, 2017, 28, 441-448.	2.3	33

#	Article	IF	CITATIONS
91	Platelet extracellular vesicles induce a proâ€inflammatory smooth muscle cell phenotype. Journal of Extracellular Vesicles, 2017, 6, 1322454.	12.2	81
92	Platelets and Coagulation. , 2017, , 447-462.		4
93	Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. Science Translational Medicine, 2017, 9, .	12.4	121
94	Effect of platelet-derived Î ² -thromboglobulins on coagulation. Thrombosis Research, 2017, 154, 7-15.	1.7	8
95	Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease. American Journal of Human Genetics, 2017, 100, 75-90.	6.2	343
96	Platelet interaction with activated endothelium: mechanistic insights from microfluidics. Blood, 2017, 130, 2819-2828.	1.4	117
97	Platelet populations and priming in hematological diseases. Blood Reviews, 2017, 31, 389-399.	5.7	59
98	Platelet function is modified by common sequence variation in megakaryocyte super enhancers. Nature Communications, 2017, 8, 16058.	12.8	50
99	Specific Alleles of <i>CLN7</i> / <i>MFSD8</i> , a Protein That Localizes to Photoreceptor Synaptic Terminals, Cause a Spectrum of Nonsyndromic Retinal Dystrophy. , 2017, 58, 2906.		35
100	OC-08 - Multiple functional defects in platelets from thrombocytopenic cancer patients undergoing chemotherapy. Thrombosis Research, 2016, 140, S171.	1.7	3
101	Platelets and coagulation in thrombus formation: aberrations in the Scott syndrome. Thrombosis Research, 2016, 141, S12-S16.	1.7	23
102	A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders. Blood, 2016, 127, 2791-2803.	1.4	157
103	Sunitinib uptake inhibits platelet function in cancer patients. European Journal of Cancer, 2016, 66, 47-54.	2.8	18
104	Combined Quantification of the Global Proteome, Phosphoproteome, and Proteolytic Cleavage to Characterize Altered Platelet Functions in the Human Scott Syndrome. Molecular and Cellular Proteomics, 2016, 15, 3154-3169.	3.8	52
105	TMEM16F-Mediated Platelet Membrane Phospholipid Scrambling Is Critical for Hemostasis and Thrombosis but not Thromboinflammation in Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2152-2157.	2.4	45
106	Coated platelets function in platelet-dependent fibrin formation via integrin α _{IIb} β ₃ and transglutaminase factor XIII. Haematologica, 2016, 101, 427-436.	3.5	57
107	PO-19 - Platelet (PLT) adhesion under flow condition in essential thrombocythemia (ET) and polycythemia vera (PV) is variably influenced according to patient mutational status. Thrombosis Research, 2016, 140, S183.	1.7	1
108	Platelet Control of Fibrin Distribution and Microelasticity in Thrombus Formation Under Flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 692-699.	2.4	53

#	Article	IF	CITATIONS
109	Platelet CD40 Exacerbates Atherosclerosis by Transcellular Activation of Endothelial Cells and Leukocytes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 482-490.	2.4	90
110	Survival protein anoctaminâ€6 controls multiple platelet responses including phospholipid scrambling, swelling, and protein cleavage. FASEB Journal, 2016, 30, 727-737.	0.5	52
111	Acute and persistent platelet and coagulant activities in atherothrombosis. Journal of Thrombosis and Haemostasis, 2015, 13, S272-S280.	3.8	31
112	Rate-limiting roles of the tenase complex of factors VIII and IX in platelet procoagulant activity and formation of platelet-fibrin thrombi under flow. Haematologica, 2015, 100, 748-756.	3.5	45
113	Desmopressin treatment improves platelet function under flow in patients with postoperative bleeding. Journal of Thrombosis and Haemostasis, 2015, 13, 1503-1513.	3.8	21
114	Plasminogen associates with phosphatidylserine-exposing platelets and contributes to thrombus lysis under flow. Blood, 2015, 125, 2568-2578.	1.4	94
115	Platelet-derived MIF: A novel platelet chemokine with distinct recruitment properties. Atherosclerosis, 2015, 239, 1-10.	0.8	40
116	Dual-Specificity Phosphatase 3 Deficiency or Inhibition Limits Platelet Activation and Arterial Thrombosis. Circulation, 2015, 131, 656-668.	1.6	42
117	Normal Platelet Activation Profile in Patients with Peripheral Arterial Disease on Aspirin. Thrombosis Research, 2015, 135, 513-520.	1.7	21
118	αIIbβ3 variants defined by next-generation sequencing: Predicting variants likely to cause Glanzmann thrombasthenia. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1898-907.	7.1	36
119	Platelet CD40L Modulates Thrombus Growth Via Phosphatidylinositol 3-Kinase β, and Not Via CD40 and lκB Kinase α. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1374-1381.	2.4	31
120	Gradual increase in thrombogenicity of juvenile platelets formed upon offset of prasugrel medication. Haematologica, 2015, 100, 1131-1138.	3.5	16
121	Coordinated Membrane Ballooning and Procoagulant Spreading in Human Platelets. Circulation, 2015, 132, 1414-1424.	1.6	139
122	Platelet Adhesion Under Flow Condition in Patients with Essential Thrombocythemia (ET) and Polycythemia Vera (PV): Analysis According to the Mutational Status. Blood, 2015, 126, 766-766.	1.4	0
123	Regulation of Platelet Procoagulant Activity. Blood, 2015, 126, SCI-33-SCI-33.	1.4	0
124	Reversal of Hypoxia in Murine Atherosclerosis Prevents Necrotic Core Expansion by Enhancing Efferocytosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2545-2553.	2.4	56
125	Thrombin-dependent Incorporation of von Willebrand Factor into a Fibrin Network. Journal of Biological Chemistry, 2014, 289, 35979-35986.	3.4	38
126	Chronic arthritis and cardiovascular disease: Altered blood parameters give rise to a prothrombotic propensity. Seminars in Arthritis and Rheumatism, 2014, 44, 345-352.	3.4	41

#	Article	IF	CITATIONS
127	Factor XI Regulates Pathological Thrombus Formation on Acutely Ruptured Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1668-1673.	2.4	47
128	What Can Proteomics Tell Us About Platelets?. Circulation Research, 2014, 114, 1204-1219.	4.5	97
129	Supporting Roles of Platelet Thrombospondin-1 and CD36 in Thrombus Formation on Collagen. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1187-1192.	2.4	59
130	Orai1â€induced storeâ€operated Ca2+ entry enhances phospholipase activity and modulates canonical transient receptor potential channelÂ6 function in murine platelets. Journal of Thrombosis and Haemostasis, 2014, 12, 528-539.	3.8	27
131	Targeting platelet receptor function in thrombus formation: The risk of bleeding. Blood Reviews, 2014, 28, 9-21.	5.7	43
132	Acid Sphingomyelinase Regulates Platelet Cell Membrane Scrambling, Secretion, and Thrombus Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 61-71.	2.4	56
133	Factor XII Regulates the Pathological Process of Thrombus Formation on Ruptured Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1674-1680.	2.4	108
134	Identification of platelet function defects by multi-parameter assessment of thrombus formation. Nature Communications, 2014, 5, 4257.	12.8	191
135	Calcium signaling recruits substrate transporters GLUT4 and CD36 to the sarcolemma without increasing cardiac substrate uptake. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E225-E236.	3.5	17
136	Insights into platelet-based control of coagulation. Thrombosis Research, 2014, 133, S139-S148.	1.7	73
137	Molecular functions of anoctamin 6 (TMEM16F): a chloride channel, cation channel, or phospholipid scramblase?. Pflugers Archiv European Journal of Physiology, 2014, 466, 407-414.	2.8	93
138	Whole blood thrombin generation in Bmal1-deficient mice. Thrombosis and Haemostasis, 2014, 112, 271-275.	3.4	11
139	Additive roles of platelets and fibrinogen in whole-blood fibrin clot formation upon dilution as assessed by thromboelastometry. Thrombosis and Haemostasis, 2014, 112, 447-457.	3.4	27
140	Thrombin-Dependent Incorporation of Von Willebrand Factor into a Fibrin Network. Blood, 2014, 124, 101-101.	1.4	0
141	The effects of arterial flow on platelet activation, thrombus growth, and stabilization. Cardiovascular Research, 2013, 99, 342-352.	3.8	89
142	Atheroprotective effect of dietary walnut intake in ApoE-deficient mice: Involvement of lipids and coagulation factors. Thrombosis Research, 2013, 131, 411-417.	1.7	44
143	Both TMEM16F-dependent and TMEM16F-independent pathways contribute to phosphatidylserine exposure in platelet apoptosis and platelet activation. Blood, 2013, 121, 1850-1857.	1.4	95
144	New Fundamentals in Hemostasis. Physiological Reviews, 2013, 93, 327-358.	28.8	817

#	Article	IF	CITATIONS
145	Plateletâ€based coagulation: different populations, different functions. Journal of Thrombosis and Haemostasis, 2013, 11, 2-16.	3.8	277
146	Distinct Role of von Willebrand Factor Triplet Bands in Glycoprotein Ib-Dependent Platelet Adhesion and Thrombus Formation under Flow. Seminars in Thrombosis and Hemostasis, 2013, 39, 306-314.	2.7	11
147	Dual Mechanism of Integrin αIIbβ3 Closure in Procoagulant Platelets. Journal of Biological Chemistry, 2013, 288, 13325-13336.	3.4	96
148	Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1357-1362.	7.1	240
149	Calcium-activated and apoptotic phospholipid scrambling induced by Ano6 can occur independently of Ano6 ion currents. Cell Death and Disease, 2013, 4, e611-e611.	6.3	57
150	Platelet secretion defect in a patient with stromal interaction molecule 1 deficiency. Blood, 2013, 122, 3696-3698.	1.4	11
151	Platelet Dysfunction in Thrombosis Patients Treated with Vitamin K Antagonists and Recurrent Bleeding. PLoS ONE, 2013, 8, e64112.	2.5	8
152	Increased Platelet Thrombus Formation Under Flow Condition In Myeloproliferative Neoplasms (MPN). Blood, 2013, 122, 33-33.	1.4	3
153	Increased Thrombin Generation and Fibrin Formation In Premature Aging BMAL1 Deficient Mice. Blood, 2013, 122, 3575-3575.	1.4	3
154	Aging- and activation-induced platelet microparticles suppress apoptosis in monocytic cells and differentially signal to proinflammatory mediator release. American Journal of Blood Research, 2013, 3, 107-23.	0.6	37
155	Antithrombotic Potential of Blockers of Store-Operated Calcium Channels in Platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1717-1723.	2.4	40
156	Contribution of Platelet CX ₃ CR1 to Platelet–Monocyte Complex Formation and Vascular Recruitment During Hyperlipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1186-1193.	2.4	76
157	Platelet protein shake as playmaker. Blood, 2012, 120, 2931-2932.	1.4	6
158	Intravital Imaging of Thrombus Formation in Small and Large Mouse Arteries: Experimentally Induced Vascular Damage and Plaque Rupture In Vivo. Methods in Molecular Biology, 2012, 788, 3-19.	0.9	9
159	Key role of integrin αIIbβ3 signaling to Syk kinase in tissue factor-induced thrombin generation. Cellular and Molecular Life Sciences, 2012, 69, 3481-3492.	5.4	35
160	Measurement of whole blood thrombus formation using parallel-plate flow chambers – a practical guide. Platelets, 2012, 23, 229-242.	2.3	127
161	Monitoring <i>in vitro</i> thrombus formation with novel microfluidic devices. Platelets, 2012, 23, 501-509.	2.3	48
162	Perioperative dilutional coagulopathy treated with fresh frozen plasma and fibrinogen concentrate: a prospective randomized intervention trial. Vox Sanguinis, 2012, 103, 25-34.	1.5	45

#	Article	IF	CITATIONS
163	Role of newly formed platelets in thrombus formation in rat after clopidogrel treatment: comparison to the reversible binding P2Y12 antagonist ticagrelor. Thrombosis and Haemostasis, 2011, 106, 1179-1188	3.4	12
164	Key role of glycoprotein Ib/V/IX and von Willebrand factor in platelet activation-dependent fibrin formation at low shear flow. Blood, 2011, 117, 651-660.	1.4	62
165	Protein kinase C mediates platelet secretion and thrombus formation through protein kinase D2. Blood, 2011, 118, 416-424.	1.4	49
166	Dividing VI by X(a). Blood, 2011, 117, 3704-3705.	1.4	3
167	Collagen surfaces to measure thrombus formation under flow: possibilities for standardization. Journal of Thrombosis and Haemostasis, 2011, 9, 856-858.	3.8	39
168	Towards standardization of in vivo thrombosis studies in mice. Journal of Thrombosis and Haemostasis, 2011, 9, 1641-1644.	3.8	14
169	Signaling role of CD36 in platelet activation and thrombus formation on immobilized thrombospondin or oxidized lowâ€density lipoprotein. Journal of Thrombosis and Haemostasis, 2011, 9, 1835-1846.	3.8	58
170	Flow chamberâ€based assays to measure thrombus formation in vitro: requirements for standardization. Journal of Thrombosis and Haemostasis, 2011, 9, 2322-2324.	3.8	74
171	Unravelling the different functions of protein kinase C isoforms in platelets. FEBS Letters, 2011, 585, 1711-1716.	2.8	27
172	Microparticles from apoptotic platelets promote resident macrophage differentiation. Cell Death and Disease, 2011, 2, e211-e211.	6.3	113
173	CD36 as a Multiple-Ligand Signaling Receptor in Atherothrombosis. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2011, 9, 42-55.	1.0	58
174	Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood, 2010, 116, 4317-4327.	1.4	249
175	Impaired α _{Ilb} β ₃ Integrin Activation and Shear-Dependent Thrombus Formation in Mice Lacking Phospholipase D1. Science Signaling, 2010, 3, ra1.	3.6	175
176	Polyphosphates: a link between platelet activation, intrinsic coagulation and inflammation?. Expert Review of Hematology, 2010, 3, 269-272.	2.2	17
177	Correction of Coagulation in Dilutional Coagulopathy: Use of Kinetic and Capacitive Coagulation Assays to Improve Hemostasis. Transfusion Medicine Reviews, 2010, 24, 44-52.	2.0	22
178	Platelet hyperreactivity and a prothrombotic phenotype in mice with a gainâ€ofâ€function mutation in phospholipaseÂCγ2. Journal of Thrombosis and Haemostasis, 2010, 8, 1353-1363.	3.8	29
179	Potentiating role of Gas6 and Tyro3, Axl and Mer (TAM) receptors in human and murine platelet activation and thrombus stabilization. Journal of Thrombosis and Haemostasis, 2010, 8, 1797-1808.	3.8	88
180	Stabilizing Role of Platelet P2Y12 Receptors in Shear-Dependent Thrombus Formation on Ruptured Plaques. PLoS ONE, 2010, 5, e10130.	2.5	42

#	Article	IF	CITATIONS
181	Spatial Distribution of Factor Xa, Thrombin, and Fibrin(ogen) on Thrombi at Venous Shear. PLoS ONE, 2010, 5, e10415.	2.5	69
182	Impaired thrombin generation and fibrin clot formation in patients with dilutional coagulopathy during major surgery. Thrombosis and Haemostasis, 2010, 103, 318-328.	3.4	72
183	Roles of Platelet STIM1 and Orai1 in Glycoprotein VI- and Thrombin-dependent Procoagulant Activity and Thrombus Formation. Journal of Biological Chemistry, 2010, 285, 23629-23638.	3.4	100
184	Functional Divergence of Platelet Protein Kinase C (PKC) Isoforms in Thrombus Formation on Collagen. Journal of Biological Chemistry, 2010, 285, 23410-23419.	3.4	96
185	Platelets and Platelet-Derived Microparticles in Vascular Inflammatory Disease. Inflammation and Allergy: Drug Targets, 2010, 9, 346-354.	1.8	40
186	Non-redundant Roles of Phosphoinositide 3-Kinase Isoforms $\hat{I}\pm$ and \hat{I}^2 in Glycoprotein VI-induced Platelet Signaling and Thrombus Formation. Journal of Biological Chemistry, 2009, 284, 33750-33762.	3.4	110
187	Complementary roles of platelets and coagulation in thrombus formation on plaques acutely ruptured by targeted ultrasound treatment: a novel intravital model. Journal of Thrombosis and Haemostasis, 2009, 7, 152-161.	3.8	98
188	Insulin inhibition of platelet-endothelial interaction is mediated by insulin effects on endothelial cells without direct effects on platelets: a rebuttal. Journal of Thrombosis and Haemostasis, 2009, 7, 369-371.	3.8	3
189	Molecular MRI of Early Thrombus Formation Using a Bimodal α2-Antiplasmin–Based Contrast Agent. JACC: Cardiovascular Imaging, 2009, 2, 987-996.	5.3	60
190	Platelet response heterogeneity in thrombus formation. Thrombosis and Haemostasis, 2009, 102, 1149-1156.	3.4	117
191	Dual role of collagen in factor XII–dependent thrombus formation. Blood, 2009, 114, 881-890.	1.4	186
192	PKCα regulates platelet granule secretion and thrombus formation in mice. Journal of Clinical Investigation, 2009, 119, 399-407.	8.2	136
193	Key Role of Platelet Procoagulant Activity in Tissue Factor-and Collagen-Dependent Thrombus Formation in Arterioles and VenulesIn VivoDifferential Sensitivity to Thrombin Inhibition. Microcirculation, 2008, 15, 269-282.	1.8	59
194	Dual P2Y ₁₂ receptor signaling in thrombinâ€stimulated plateletsâ€f–â€finvolvement of phosphoinositide 3â€kinaseâ€fβ but not l³â€fisoform in Ca ²⁺ â€fmobilization and procoagulant ac FEBS Journal, 2008, 275, 371-385.	tikn/nty.	43
195	Effects of plasma dilution on tissue factor–induced thrombin generation and thromboelastography: partly compensating role of platelets. Transfusion, 2008, 48, 2384-2394.	1.6	46
196	Multiple ways to switch platelet integrins on and off. Journal of Thrombosis and Haemostasis, 2008, 6, 1253-1261.	3.8	80
197	Collagenâ€mimetic peptides mediate flowâ€dependent thrombus formation by high―or lowâ€affinity binding of integrin α2β1 and glycoprotein VI. Journal of Thrombosis and Haemostasis, 2008, 6, 2132-2142.	3.8	33
198	Anticoagulant Effect of Dietary Fish Oil in Hyperlipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2023-2029.	2.4	28

#	Article	IF	CITATIONS
199	The CD40-TRAF6 axis is the key regulator of the CD40/CD40L system in neointima formation and arterial remodeling. Blood, 2008, 111, 4596-4604.	1.4	80
200	Role of membrane cholesterol in platelet calcium signalling in response to VWF and collagen under stasis and flow. Thrombosis and Haemostasis, 2008, 99, 1068-1078.	3.4	18
201	Genetic Analysis of the Role of Protein Kinase CÎ, in Platelet Function and Thrombus Formation. PLoS ONE, 2008, 3, e3277.	2.5	37
202	Increased thrombin generation and fibrinogen level after therapeutic plasma transfusion: Relation to bleeding. Thrombosis and Haemostasis, 2008, 99, 64-70.	3.4	53
203	Segregation of Platelet Aggregatory and Procoagulant Microdomains in Thrombus Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2484-2490.	2.4	137
204	Dual Role of Platelet Protein Kinase C in Thrombus Formation. Journal of Biological Chemistry, 2007, 282, 7046-7055.	3.4	54
205	Activation of αIlbβ3 is a sufficient but also an imperative prerequisite for activation of α2β1 on platelets. Blood, 2007, 109, 595-602.	1.4	43
206	Optical and Magnetic Resonance Imaging of Cell Death and Platelet Activation Using Annexin A5-Functionalized Quantum Dots. Nano Letters, 2007, 7, 93-100.	9.1	149
207	Role of murine integrin α2β1 in thrombus stabilization and embolization: Contribution of thromboxane A2. Thrombosis and Haemostasis, 2007, 98, 1072-1080.	3.4	34
208	Plasma Triacylglycerol and Coagulation Factor Concentrations Predict the Anticoagulant Effect of Dietary Fish Oil in Overweight Subjects. Journal of Nutrition, 2007, 137, 7-13.	2.9	16
209	Novel methodology for assessment of prophylactic platelet transfusion therapy by measuring increased thrombus formation and thrombin generation. British Journal of Haematology, 2007, 136, 480-490.	2.5	20
210	Can blood flow assays help to identify clinically relevant differences in von Willebrand factor functionality in von Willebrand disease types 1–3?. Journal of Thrombosis and Haemostasis, 2007, 5, 2547-2549.	3.8	21
211	The quercetin paradox. Toxicology and Applied Pharmacology, 2007, 222, 89-96.	2.8	188
212	Hemostatic and Signaling Functions of Transfused Platelets. Transfusion Medicine Reviews, 2007, 21, 287-294.	2.0	66
213	Both ADP and Thrombin Regulate Arteriolar Thrombus Stabilization and Embolization, but Are Not Involved in Initial Hemostasis as Induced by Micropuncture. Microcirculation, 2007, 14, 193-205.	1.8	39
214	Role of murine integrin alpha2beta1 in thrombus stabilization and embolization: contribution of thromboxane A2. Thrombosis and Haemostasis, 2007, 98, 1072-80.	3.4	17
215	Continuous signaling via PI3K isoforms β and γ is required for platelet ADP receptor function in dynamic thrombus stabilization. Blood, 2006, 108, 3045-3052.	1.4	145
216	Shedding of procoagulant microparticles from unstimulated platelets by integrinâ€nediated destabilization of actin cytoskeleton. FEBS Letters, 2006, 580, 5313-5320.	2.8	132

#	Article	IF	CITATIONS
217	Platelet ADP response deteriorates in synthetic storage media. Transfusion, 2006, 46, 204-212.	1.6	51
218	Plasma ectonucleotidases prevent desensitization of purinergic receptors in stored platelets: importance for platelet activity during thrombus formation. Transfusion, 2006, 46, 1018-1028.	1.6	26
219	Flow-based assays for global assessment of hemostasis. Part 1: biorheologic considerations. Journal of Thrombosis and Haemostasis, 2006, 4, 2486-2487.	3.8	45
220	Flow-based assays for global assessment of hemostasis. Part 2: current methods and considerations for the future. Journal of Thrombosis and Haemostasis, 2006, 4, 2716-2717.	3.8	46
221	Factor Xa and thrombin evoke additive calcium and proinflammatory responses in endothelial cells subjected to coagulation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 860-869.	4.1	40
222	Platelet Inhibition by Insulin Is Absent in Type 2 Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 417-422.	2.4	191
223	Shedding of Procoagulant Microparticles from Platelets through Integrin Outside-In Signaling Involving WASP and the Actin Cytoskeleton Blood, 2006, 108, 1529-1529.	1.4	Ο
224	Regulation of Microvascular Thromboembolism In Vivo. Microcirculation, 2005, 12, 287-300.	1.8	34
225	Recombinant factor VIIa enhances platelet adhesion and activation under flow conditions at normal and reduced platelet count. Journal of Thrombosis and Haemostasis, 2005, 3, 742-751.	3.8	83
226	Classification of venous thromboembolism (VTE). Journal of Thrombosis and Haemostasis, 2005, 3, 2571-2573.	3.8	7
227	Classification of venous thromboembolism (VTE). Journal of Thrombosis and Haemostasis, 2005, 3, 2575-2577.	3.8	9
228	Platelet Collagen Receptors and Coagulation. A Characteristic Platelet Response as Possible Target for Antithrombotic Treatment. Trends in Cardiovascular Medicine, 2005, 15, 86-92.	4.9	56
229	Platelet P2Y12 receptors enhance signalling towards procoagulant activity and thrombin generation. Thrombosis and Haemostasis, 2005, 93, 1128-1136.	3.4	88
230	Fibrillar type I collagens enhance platelet-dependent thrombin generation via glycoprotein VI with direct support of α2β1 but not αIlbβ3 integrin. Thrombosis and Haemostasis, 2005, 94, 107-114.	3.4	25
231	Regulation of tissue factor-induced coagulation and platelet aggregation in flowing whole blood. Thrombosis and Haemostasis, 2005, 93, 97-105.	3.4	9
232	The Glycoprotein VI-Phospholipase Cl̂32 Signaling Pathway Controls Thrombus Formation Induced by Collagen and Tissue Factor In Vitro and In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2673-2678.	2.4	82
233	Synergistic Effect of Thrombin on Collagen-Induced Platelet Procoagulant Activity Is Mediated Through Protease-Activated Receptor-1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1499-1505.	2.4	78
234	Contribution of platelet glycoprotein VI to the thrombogenic effect of collagens in fibrous atherosclerotic lesions. Atherosclerosis, 2005, 181, 19-27.	0.8	72

#	Article	IF	CITATIONS
235	Adhesion of human and mouse platelets to collagen under shear: a unifying model. FASEB Journal, 2005, 19, 1-22.	0.5	113
236	Antithrombin extends its job. Thrombosis and Haemostasis, 2004, 92, 1171.	3.4	0
237	Variable Hypocoagulant Effect of Fish Oil Intake in Humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1734-1740.	2.4	94
238	Principal Role of Glycoprotein VI in α2β1 and αIIbβ3 Activation During Collagen-Induced Thrombus Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1727-1733.	2.4	86
239	Measurement of the Platelet Procoagulant Response. , 2004, 272, 135-144.		4
240	Initiating and potentiating role of platelets in tissue factor-induced thrombin generation in the presence of plasma: subject-dependent variation in thrombogram characteristics. Journal of Thrombosis and Haemostasis, 2004, 2, 476-484.	3.8	128
241	Decreased responsiveness and development of activation markers of PLTs stored in plasma. Transfusion, 2004, 44, 49-58.	1.6	61
242	Facilitating roles of murine platelet glycoprotein Ib and αIIbβ3 in phosphatidylserine exposure during vWF-collagen-induced thrombus formation. Journal of Physiology, 2004, 558, 403-415.	2.9	20
243	Control of platelet activation by cyclic AMP turnover and cyclic nucleotide phosphodiesterase type-3. Biochemical Pharmacology, 2004, 67, 1559-1567.	4.4	68
244	Platelet receptor interplay regulates collagen-induced thrombus formation in flowing human blood. Blood, 2004, 103, 1333-1341.	1.4	175
245	Monoclonal antibody IAC-1 is specific for activated α2β1 and binds to amino acids 199 to 201 of the integrin α2 I-domain. Blood, 2004, 104, 390-396.	1.4	36
246	Recombinant Factor VIIa Enhances Platelet Adhesion and Aggregation under Flow Conditions at Normal and Reduced Platelet Count Blood, 2004, 104, 2618-2618.	1.4	0
247	Cell-to-cell variability in the differentiation program of human megakaryocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1643, 85-94.	4.1	21
248	Integrin αIIbβ3 and shear-dependent action of glycoprotein ibα stimulate platelet-dependent thrombin formation in stirred plasma. Translational Research, 2003, 141, 350-358.	2.3	9
249	von Willebrand factor stimulates thrombin-induced exposure of procoagulant phospholipids on the surface of fibrin-adherent platelets. Journal of Thrombosis and Haemostasis, 2003, 1, 559-565.	3.8	13
250	Prostacyclin is a platelet activator when protein kinase A is inhibited. Journal of Thrombosis and Haemostasis, 2003, 1, 605-606.	3.8	0
251	Complementary roles of platelet glycoprotein VI and integrin α2β1 in collagenâ€induced thrombus formation in flowing whole blood ex vivo. FASEB Journal, 2003, 17, 685-687.	0.5	136
252	In Vivo Blockade of Platelet ADP Receptor P2Y 12 Reduces Embolus and Thrombus Formation but Not Thrombus Stability. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 518-523.	2.4	67

#	Article	IF	CITATIONS
253	Overexpression of the platelet P2X1 ion channel in transgenic mice generates a novel prothrombotic phenotype. Blood, 2003, 101, 3969-3976.	1.4	121
254	Fish Oil Consumption and Reduction of Arterial Disease. Journal of Nutrition, 2003, 133, 657-660.	2.9	68
255	Store-mediated calcium entry in the regulation of phosphatidylserine exposure in blood cells from Scott patients. Thrombosis and Haemostasis, 2003, 89, 687-695.	3.4	61
256	Store-mediated calcium entry in the regulation of phosphatidylserine exposure in blood cells from Scott patients. Thrombosis and Haemostasis, 2003, 89, 687-95.	3.4	14
257	Development of Platelet Inhibition by cAMP during Megakaryocytopoiesis. Journal of Biological Chemistry, 2002, 277, 29321-29329.	3.4	26
258	Platelet Activation and Blood Coagulation. Thrombosis and Haemostasis, 2002, 88, 186-193.	3.4	460
259	Real-Time Detection of Activation Patterns in Individual Platelets during Thromboembolism in vivo: Differences between Thrombus Growth and Embolus Formation. Journal of Vascular Research, 2002, 39, 534-543.	1.4	57
260	Thrombin-induced Hyperactivity of Platelets of Young Stroke Patients. Thrombosis and Haemostasis, 2002, 88, 931-937.	3.4	27
261	Cyclic AMP Raises Intracellular Ca2+in Human Megakaryocytes Independent of Protein Kinase A. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 179-186.	2.4	17
262	Glutathione oxidation in calcium- and p38 MAPK-dependent membrane blebbing of endothelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1591, 129-138.	4.1	26
263	Irregular spiking in free calcium concentration in single, human platelets. FEBS Journal, 2002, 269, 1543-1552.	0.2	21
264	Platelet activation and blood coagulation. Thrombosis and Haemostasis, 2002, 88, 186-93.	3.4	200
265	Modulation of rat platelet activation by vessel wall-derived prostaglandin and platelet-derived thromboxane: effects of dietary fish oil on thromboxane–prostaglandin balance. Atherosclerosis, 2001, 154, 355-366.	0.8	11
266	Expression of transient receptor potential mRNA isoforms and Ca2+ influx in differentiating human stem cells and platelets. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1539, 243-255.	4.1	67
267	Vitamin K-Dependent and Vitamin K-Independent Hypocoagulant Effects of Dietary Fish Oil in Rats. Thrombosis Research, 2001, 104, 137-147.	1.7	16
268	Reply to Rebuttal: On the Role of EPR-1 or an EPR-1-like Molecule in Regulating Factor Xa Incorporation into Platelet Prothrombinase. Thrombosis and Haemostasis, 2001, 86, 1135-1135.	3.4	0
269	On the Role of EPR-1 or an EPR-1-like Molecule in Regulating Factor Xa Incorporation into Platelet Prothrombinase. Thrombosis and Haemostasis, 2001, 86, 1133-1134.	3.4	2
270	Contribution of Platelet-derived Factor Va to Thrombin Generation on Immobilized Collagen- and Fibrinogen-adherent Platelets. Thrombosis and Haemostasis, 2001, 85, 509-513.	3.4	23

#	Article	IF	CITATIONS
271	Fibrinogen binding to the integrin αIIbβ3 modulates store-mediated calcium entry in human platelets. Blood, 2001, 97, 2648-2656.	1.4	34
272	Biogenesis of G-protein Mediated Calcium Signaling in Human Megakaryocytes. Thrombosis and Haemostasis, 2001, 86, 1106-1113.	3.4	18
273	Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO Journal, 2001, 20, 2120-2130.	7.8	461
274	Ragged spiking of free calcium in ADPâ€stimulated human platelets: regulation of puffâ€like calcium signals in vitro and ex vivo. Journal of Physiology, 2001, 535, 625-635.	2.9	70
275	Platelet Adhesion Enhances the Glycoprotein Vl–Dependent Procoagulant Response. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 618-627.	2.4	120
276	The roles of P2X1and P2T ACreceptors in ADP-evoked calcium signalling in human platelets. Cell Calcium, 2000, 28, 119-126.	2.4	59
277	Monitoring Hypocoagulant Conditions in Rat Plasma: Factors Determining the Endogenous Thrombin Potential of Tissue Factor-Activated Plasma. Thrombosis and Haemostasis, 2000, 84, 1045-1051.	3.4	14
278	α2A-Adrenergic Receptor Stimulation Potentiates Calcium Release in Platelets by Modulating cAMP Levels. Journal of Biological Chemistry, 2000, 275, 1763-1772.	3.4	79
279	Function of Glutathione Peroxidase in Endothelial Cell Vitality. Archives of Biochemistry and Biophysics, 2000, 382, 63-71.	3.0	6
280	Nebivolol: A Third-Generation β-Blocker That Augments Vascular Nitric Oxide Release. Circulation, 2000, 102, 677-684.	1.6	236
281	Receptors and signalling mechanisms in the procoagulant response of platelets. Platelets, 2000, 11, 301-306.	2.3	42
282	Function of Glycoprotein VI and Integrin α2β1 in the Procoagulant Response of Single, Collagen-Adherent Platelets. Thrombosis and Haemostasis, 1999, 81, 782-792.	3.4	66
283	Peroxide-induced membrane blebbing in endothelial cells associated with glutathione oxidation but not apoptosis. American Journal of Physiology - Cell Physiology, 1999, 277, C20-C28.	4.6	46
284	Mildly Oxidized Low Density Lipoprotein Induces Contraction of Human Endothelial Cells through Activation of Rho/Rho Kinase and Inhibition of Myosin Light Chain Phosphatase. Journal of Biological Chemistry, 1999, 274, 30361-30364.	3.4	113
285	Heterogeneity in microparticle formation and exposure of anionic phospholipids at the plasma membrane of single adherent platelets. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1451, 163-172.	4.1	29
286	Inter-individual variability in Ca2+signalling in platelets from healthy volunteers: effects of aspirin and relationship with expression of endomembrane Ca2+-ATPases. British Journal of Haematology, 1998, 102, 850-859.	2.5	30
287	Contribution of thromboxane and endomembrane Ca2+-ATPases to variability in Ca2+ signalling of platelets from healthy volunteers. Platelets, 1998, 9, 179-183.	2.3	7
288	Hypocoagulant and Lipid-Lowering Effects of Dietary n-3 Polyunsaturated Fatty Acids With Unchanged Platelet Activation in Rats. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 1480-1489.	2.4	29

#	Article	IF	CITATIONS
289	The Procoagulant Effect of Thrombin on Fibrin(ogen)-Bound Platelets. Pathophysiology of Haemostasis and Thrombosis: International Journal on Haemostasis and Thrombosis Research, 1998, 28, 289-300.	0.3	2
290	Prothrombin conversion under flow conditions by prothrombinase assembled on adherent platelets. Blood Coagulation and Fibrinolysis, 1997, 8, 168-174.	1.0	31
291	Effect of membrane-permeable sulfhydryl reagents and depletion of glutathione on calcium mobilisation in human platelets. Biochemical Pharmacology, 1997, 53, 1533-1542.	4.4	20
292	Human platelet activation is inhibited upstream of the activation of phospholipase A2 by U73343. Biochemical Pharmacology, 1997, 53, 1257-1262.	4.4	9
293	Kinetics of store-operated Ca2+ influx evoked by endomembrane Ca2+-ATPase inhibitors in human platelets. Prostaglandins Leukotrienes and Essential Fatty Acids, 1997, 57, 447-450.	2.2	1
294	Effects of U73122 and U73343 on human platelet calcium signalling and protein tyrosine phosphorylation. Biochimica Et Biophysica Acta - Molecular Cell Research, 1997, 1355, 81-88.	4.1	33
295	Activation of protein kinase C enhances the infection of endothelial cells by human cytomegalovirus. Virus Research, 1997, 48, 207-213.	2.2	17
296	Collagen But Not Fibrinogen Surfaces Induce Bleb Formation, Exposure of Phosphatidylserine, and Procoagulant Activity of Adherent Platelets: Evidence for Regulation by Protein Tyrosine Kinase-Dependent Ca2+ Responses. Blood, 1997, 90, 2615-2625.	1.4	235
297	The Ca2+-Mobilizing Potency of alpha-Thrombin and Thrombin-Receptor-Activating Peptide on Human Platelets. Concentration and Time Effects of Thrombin-Induced Ca2+ Signaling. FEBS Journal, 1997, 249, 547-555.	0.2	85
298	Collagen But Not Fibrinogen Surfaces Induce Bleb Formation, Exposure of Phosphatidylserine, and Procoagulant Activity of Adherent Platelets: Evidence for Regulation by Protein Tyrosine Kinase-Dependent Ca2+ Responses. Blood, 1997, 90, 2615-2625.	1.4	3
299	Subsection signal transduction. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1311, 64-70.	4.1	7
300	Polyunsaturated fatty acids and function of platelets and endothelial cells. Current Opinion in Lipidology, 1996, 7, 24-29.	2.7	26
301	Differential release of histamine and prostaglandin D2 in rat peritoneal mast cells: roles of cytosolic calcium and protein tyrosine kinases. Biochimica Et Biophysica Acta - Molecular Cell Research, 1995, 1265, 79-88.	4.1	33
302	Effects of dietary fatty acids on signal transduction and membrane cholesterol content in rat platelets. Lipids and Lipid Metabolism, 1995, 1255, 87-97.	2.6	21
303	Interactions between Endothelial Cells and Blood Platelets. Endothelium: Journal of Endothelial Cell Research, 1995, 3, 81-98.	1.7	7
304	Calcium Signalling in Platelets and Other Cells. Platelets, 1994, 5, 295-316.	2.3	104
305	Indirect regulation of Ca2+ entry by cAMP-dependent and cCMP-dependent protein kinases and phospholipase C in rat platelets. FEBS Journal, 1994, 223, 543-551.	0.2	43
306	Function of intracellular [Ca2+]i in exocytosis and transbilayer movement in human platelets surface-labeled with the fluorescent probe 1-(4-(trimethylammonio)phenyl)-6-phenyl-1,3,5-hexatriene. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1147, 194-204.	2.6	18

#	Article	IF	CITATIONS
307	Calcium fluxes in activated blood platelets: effects of dietary fatty acids. American Journal of Clinical Nutrition, 1993, 57, 831S.	4.7	0
308	Calcium Influx Mechanisms and Signal Organisation in Human Platelets. Advances in Experimental Medicine and Biology, 1993, 344, 69-82.	1.6	8
309	Thapsigargin Amplifies the Platelet Procoagulant Response Caused by Thrombin. Thrombosis and Haemostasis, 1993, 70, 1024-1029.	3.4	40
310	Spiking in cytosolic calcium concentration in single fibrinogen-bound fura-2-loaded human platelets. Biochemical Journal, 1992, 283, 379-383.	3.7	59
311	Thromboxane receptor stimulation inhibits adenylate cyclase and reduces cyclic AMP-mediated inhibition of ADP-evoked responses in fura-2-loaded human platelets. FEBS Letters, 1992, 298, 199-202.	2.8	12
312	Do dietary fatty acids affect platelet aggregation and arterial thrombosis tendency in a rat model?. American Journal of Clinical Nutrition, 1992, 56, 816S.	4.7	1
313	Calcium influx evoked by Ca2+ store depletion in human platelets is more susceptible to cytochrome P-450 inhibitors than receptor-mediated calcium entry. Cell Calcium, 1992, 13, 553-564.	2.4	95
314	Effect of N-3 Fatty Acids on Eicosanoid Formation: Implications for Platelet Thrombotic Functions. , 1992, 37, 145-150.		1
315	Rat platelets are deficient in internal Ca2+release and require influx of extracellular Ca2+for activation. FEBS Letters, 1991, 284, 223-226.	2.8	36
316	Biosynthesis and Desaturation of Prokaryotic Galactolipids in Leaves and Isolated Chloroplasts from Spinach. Plant Physiology, 1991, 96, 144-152.	4.8	23
317	Dietary fat modifies thromboxane A2-induced stimulation of rat platelets. Biochemical Journal, 1991, 278, 399-404.	3.7	22
318	Biosynthesis of Digalactosyldiacylglycerol in Plastids from 16:3 and 18:3 Plants. Plant Physiology, 1990, 93, 1286-1294.	4.8	66
319	Membrane fluidity of non-activated and activated human blood platelets. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1025, 173-178.	2.6	20
320	Influence of dietary fatty acids on membrane fluidity and activation of rat platelets. Lipids and Lipid Metabolism, 1989, 1004, 252-260.	2.6	35
321	UDPgalactose-independent synthesis of monogalactosyldiacylglycerol. An enzymatic activity of the spinach chloroplast envelope. Lipids and Lipid Metabolism, 1988, 961, 38-47.	2.6	2
322	Synthesis of Mono- and Digalactosyldiacylglycerol in Isolated Spinach Chloroplasts. Plant Physiology, 1988, 86, 971-977.	4.8	33
323	Characterization of galactosyltransferases in spinach chloroplast envelopes. Lipids and Lipid Metabolism, 1987, 918, 189-203.	2.6	25
324	Role of the chloroplast in the leaf acyl-lipid synthesis. Physiologia Plantarum, 1987, 70, 558-568.	5.2	52

#	Article	IF	CITATIONS
325	Cytosolic and particulate phosphatidylinositol phospholipase C activities in pollen tubes of Lilium longiflorum. Physiologia Plantarum, 1987, 71, 120-126.	5.2	16
326	On the Synthesis of Digalactosyldiacylglycerol in Chloroplasts, and Its Relation to Monogalactolipid Synthesis. , 1987, , 293-300.		4
327	Characterization of Galactosyltransferases in Spinach Chloroplast Envelope Membranes Applications of an Assay for UDPGal: Diacylglycerol Galactosyltransferase. , 1987, , 301-303.		1
328	Galactosyltransferase Activities in Intact Spinach Chloroplasts and Envelope Membrane Involvement of Galactolipid: Galactolipid Galactosyltransferase. , 1987, , 205-208.		0
329	Characterization of Galactosyltransferases in Spinach Chloroplast Envelope Membranes. UDPgal-Dependent and -Independent Galactolipid Synthesis. , 1987, , 209-212.		0
330	Localization of galactolipid: galactolipid galactosyltransferase and acyltransferase in outer envelope membrane of spinach chloroplasts. Lipids and Lipid Metabolism, 1986, 877, 281-289.	2.6	39
331	Separation of chloroplast polar lipids and measurement of galactolipid metabolism by high-performance liquid chromatography. Analytical Biochemistry, 1986, 154, 85-91.	2.4	23
332	Spinach chloroplasts: localization of enzymes involved in galactolipid metabolism. Lipids and Lipid Metabolism, 1985, 835, 212-220.	2.6	19
333	Turnover of galactolipids incorporated into chloroplast envelopes. Lipids and Lipid Metabolism, 1983, 754, 181-189.	2.6	37
334	Multi-parameter assessment of thrombus formation on microspotted arrays of thrombogenic surfaces. Protocol Exchange, 0, , .	0.3	4