Frances Kay Huebner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3759207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The FHIT Gene, Spanning the Chromosome 3p14.2 Fragile Site and Renal Carcinoma–Associated t(3;8) Breakpoint, Is Abnormal in Digestive Tract Cancers. Cell, 1996, 84, 587-597.	28.9	950
2	The FHIT Gene at 3p14.2 Is Abnormal in Lung Cancer. Cell, 1996, 85, 17-26.	28.9	529
3	Fhit, a Putative Tumor Suppressor in Humans, Is a Dinucleoside 5â€~,5â€~Ââ€~â€~-P1,P3-Triphosphate Hydrolaseâ€ Biochemistry, 1996, 35, 11529-11535.	2.5	344
4	Cloning, Characterization, and Chromosomal Localization of a Human 5â€HT ₆ Serotonin Receptor. Journal of Neurochemistry, 1996, 66, 47-56.	3.9	329
5	Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. Proceedings of the United States of America, 2004, 101, 4401-4406.	7.1	222
6	THE ROLE OF THE <i>FHIT/FRA3B</i> LOCUS IN CANCER. Annual Review of Genetics, 1998, 32, 7-31.	7.6	167
7	FRA3B and other common fragile sites: the weakest links. Nature Reviews Cancer, 2001, 1, 214-221.	28.4	167
8	Fragile genes as biomarkers: epigenetic control of WWOX and FHIT in lung, breast and bladder cancer. Oncogene, 2005, 24, 1625-1633.	5.9	164
9	Role of <i>FHIT</i> in Human Cancer. Journal of Clinical Oncology, 1999, 17, 1618-1618.	1.6	161
10	Integrated MicroRNA and mRNA Signatures Associated with Survival in Triple Negative Breast Cancer. PLoS ONE, 2013, 8, e55910.	2.5	158
11	WWOX gene restoration prevents lung cancer growth in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15611-15616.	7.1	128
12	The fragile genes <i>FHIT</i> and <i>WWOX</i> are inactivated coordinately in invasive breast carcinoma. Cancer, 2004, 100, 1605-1614.	4.1	126
13	Loss of <i>WWOX</i> Expression in Gastric Carcinoma. Clinical Cancer Research, 2004, 10, 3053-3058.	7.0	117
14	The histidine triad superfamily of nucleotide-binding proteins. Journal of Cellular Physiology, 1999, 181, 179-187.	4.1	108
15	<i>WWOX</i> gene and gene product: tumor suppression through specific protein interactions. Future Oncology, 2010, 6, 249-259.	2.4	96
16	A Role for the WWOX Gene in Prostate Cancer. Cancer Research, 2006, 66, 6477-6481.	0.9	92
17	The FHIT gene product: tumor suppressor and genome "caretaker― Cellular and Molecular Life Sciences, 2014, 71, 4577-4587.	5.4	88
18	WW domain containing oxidoreductase gene expression is altered in non-small cell lung cancer. Cancer Research, 2003, 63, 878-81.	0.9	87

#	Article	IF	CITATIONS
19	Inhibition of Breast Cancer Cell Growth In vitro and In vivo: Effect of Restoration of Wwox Expression. Clinical Cancer Research, 2007, 13, 268-274.	7.0	86
20	Roles of FHIT and WWOX fragile genes in cancer. Cancer Letters, 2006, 232, 27-36.	7.2	84
21	Initiation of Genome Instability and Preneoplastic Processes through Loss of Fhit Expression. PLoS Genetics, 2012, 8, e1003077.	3.5	84
22	Androgen Receptor Status Is a Prognostic Marker in Non-Basal Triple Negative Breast Cancers and Determines Novel Therapeutic Options. PLoS ONE, 2014, 9, e88525.	2.5	79
23	Deletion mapping of chromosome region 9p21-p22 surrounding theCDKN2 locus in melanoma. , 1996, 65, 762-767.		76
24	Designed FHIT alleles establish that Fhit-induced apoptosis in cancer cells is limited by substrate binding. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1592-1597.	7.1	76
25	Fhit is a physiological target of the protein kinase Src. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3775-3779.	7.1	66
26	Concordant loss of fragile gene expression early in breast cancer development. Pathology International, 2005, 55, 471-478.	1.3	66
27	Fhit Interaction with Ferredoxin Reductase Triggers Generation of Reactive Oxygen Species and Apoptosis of Cancer Cells. Journal of Biological Chemistry, 2008, 283, 13736-13744.	3.4	64
28	Wwox and Ap2Î ³ Expression Levels Predict Tamoxifen Response. Clinical Cancer Research, 2007, 13, 6115-6121.	7.0	61
29	Expression of FRA16D/WWOX and FRA3B/FHIT genes in hematopoietic malignancies. Molecular Cancer Research, 2003, 1, 940-7.	3.4	60
30	Intramitochondrial calcium regulation by the FHIT gene product sensitizes to apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12753-12758.	7.1	58
31	Potential Cancer Therapy With the Fragile Histidine Triad Gene. JAMA - Journal of the American Medical Association, 2001, 286, 2441.	7.4	57
32	FHIT Suppresses Epithelial-Mesenchymal Transition (EMT) and Metastasis in Lung Cancer through Modulation of MicroRNAs. PLoS Genetics, 2014, 10, e1004652.	3.5	56
33	TWIST1-Induced miR-424 Reversibly Drives Mesenchymal Programming while Inhibiting Tumor Initiation. Cancer Research, 2015, 75, 1908-1921.	0.9	56
34	Molecular alterations to human chromosome 3p loci in neuroendocrine lung tumors. Cancer, 1998, 83, 1109-1117.	4.1	55
35	Epigenetic modulation of endogenous tumor suppressor expression in lung cancer xenografts suppresses tumorigenicity. International Journal of Cancer, 2007, 120, 24-31.	5.1	55
36	<i>WWOX</i> : A fragile tumor suppressor. Experimental Biology and Medicine, 2015, 240, 296-304.	2.4	55

3

#	Article	IF	CITATIONS
37	Common chromosome fragile sites in human and murine epithelial cells and <i>FHIT/FRA3B</i> lossâ€induced global genome instability. Genes Chromosomes and Cancer, 2013, 52, 1017-1029.	2.8	54
38	Regression of upper gastric cancer in mice by FHIT gene delivery. FASEB Journal, 2003, 17, 1768-1770.	0.5	53
39	Fragile site orthologs FHIT/FRA3B and Fhit/Fra14A2: Evolutionarily conserved but highly recombinogenic. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14988-14993.	7.1	49
40	Identification of the putative tumor suppressor Nit2 as ω-amidase, an enzyme metabolically linked to glutamine and asparagine transamination. Biochimie, 2009, 91, 1072-1080.	2.6	48
41	Involvement of theFhit gene in the ionizing radiation-activated ATR/CHK1 pathway. Journal of Cellular Physiology, 2005, 202, 518-523.	4.1	47
42	Fhit expression in gastric adenocarcinoma. , 2000, 88, 24-34.		46
43	Fhit and CHK1 Have Opposing Effects on Homologous Recombination Repair. Cancer Research, 2005, 65, 8613-8616.	0.9	46
44	Aberrant expression of DNA damage response proteins is associated with breast cancer subtype and clinical features. Breast Cancer Research and Treatment, 2011, 129, 421-432.	2.5	46
45	The fragile histidine triad/common chromosome fragile site 3B locus and repair-deficient cancers. Cancer Research, 2002, 62, 4054-60.	0.9	46
46	Role of the <i>WWOX</i> gene, encompassing fragile region <i>FRA16D</i> , in suppression of pancreatic carcinoma cells. Cancer Science, 2008, 99, 1370-1376.	3.9	44
47	Biological Functions of Mammalian Nit1, the Counterpart of the Invertebrate NitFhit Rosetta Stone Protein, a Possible Tumor Suppressor. Journal of Biological Chemistry, 2006, 281, 28244-28253.	3.4	43
48	Fhit tumor suppressor: guardian of the preneoplastic genome. Future Oncology, 2008, 4, 815-824.	2.4	43
49	Pathology and biology associated with the fragile <i>FHIT</i> gene and gene product. Journal of Cellular Biochemistry, 2010, 109, 858-865.	2.6	42
50	Fragile histidine triad protein, WW domainâ€containing oxidoreductase protein Wwox, and activator protein 2γ expression levels correlate with basal phenotype in breast cancer. Cancer, 2009, 115, 899-908.	4.1	41
51	A Fhit-ing Role in the DNA Damage Checkpoint Response. Cell Cycle, 2007, 6, 1044-1048.	2.6	40
52	<i>FHIT</i> , a Novel Modifier Gene in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 83-98.	5.6	39
53	Fhit Modulates the DNA Damage Checkpoint Response. Cancer Research, 2006, 66, 11287-11292.	0.9	35
54	Fhit–Fdxr interaction in the mitochondria: modulation of reactive oxygen species generation and apoptosis in cancer cells. Cell Death and Disease, 2019, 10, 147.	6.3	35

#	Article	IF	CITATIONS
55	Molecular parameters of genome instability: Roles of fragile genes at common fragile sites. Journal of Cellular Biochemistry, 2008, 104, 1525-1533.	2.6	33
56	Stem cell-related markers in primary breast cancers and associated metastatic lesions. Modern Pathology, 2012, 25, 949-955.	5.5	33
57	Fragile gene product, Fhit, in oxidative and replicative stress responses. Cancer Science, 2009, 100, 1145-1150.	3.9	32
58	Nit1 is a metabolite repair enzyme that hydrolyzes deaminated glutathione. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3233-E3242.	7.1	32
59	Fragile Genes That Are Frequently Altered in Cancer: Players Not Passengers. Cytogenetic and Genome Research, 2016, 150, 208-216.	1.1	31
60	Hits, Fhits and Nits: Beyond enzymatic function. Advances in Enzyme Regulation, 2011, 51, 208-217.	2.6	30
61	Zinc supplementation suppresses 4-nitroquinoline 1-oxide-induced rat oral carcinogenesis. Carcinogenesis, 2011, 32, 554-560.	2.8	30
62	Lung Cancer Susceptibility in Fhit-Deficient Mice Is Increased by Vhl Haploinsufficiency. Cancer Research, 2005, 65, 6576-6582.	0.9	29
63	Familial uveal melanoma: absence of germline mutations involving the cyclin-dependent kinase-4 inhibitor gene (p16). Ophthalmic Genetics, 1996, 17, 39-40.	1.2	27
64	<i>FHIT</i> loss-induced DNA damage creates optimal APOBEC substrates: Insights into APOBEC-mediated mutagenesis. Oncotarget, 2015, 6, 3409-3419.	1.8	27
65	Fhit Deficiency-Induced Global Genome Instability Promotes Mutation and Clonal Expansion. PLoS ONE, 2013, 8, e80730.	2.5	27
66	Correlation of Fragile Histidine Triad (Fhit) Protein Structural Features with Effector Interactions and Biological Functions. Journal of Biological Chemistry, 2009, 284, 1040-1049.	3.4	25
67	Losses at 3p common deletion sites in subtypes of kidney tumours: histopathological correlations. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 1996, 429, 37-42.	2.8	24
68	Nit1 and Fhit tumor suppressor activities are additive. Journal of Cellular Biochemistry, 2009, 107, 1097-1106.	2.6	24
69	Replicative Stress and the FHIT Gene: Roles in Tumor Suppression, Genome Stability and Prevention of Carcinogenesis. Cancers, 2014, 6, 1208-1219.	3.7	23
70	Receptor Protein Tyrosine Phosphatase Gamma, Ptpγ, Regulates Hematopoietic Differentiation. Blood, 1997, 90, 49-57.	1.4	22
71	Characterization of the role of Fhit in suppression of DNA damage. Advances in Biological Regulation, 2013, 53, 77-85.	2.3	20
72	Impact of FHIT loss on the translation of cancer-associated mRNAs. Molecular Cancer, 2017, 16, 179.	19.2	20

#	Article	IF	CITATIONS
73	Response of subtypeâ€specific human breast cancerâ€derived cells to poly(ADPâ€ribose) polymerase and checkpoint kinase 1 inhibition. Cancer Science, 2011, 102, 1882-1888.	3.9	19
74	Common Fragile Site Tumor Suppressor Genes and Corresponding Mouse Models of Cancer. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-10.	3.0	19
75	Human-like hyperplastic prostate with low ZIP1 induced solely by Zn deficiency in rats. Proceedings of the United States of America, 2018, 115, E11091-E11100.	7.1	19
76	Abrogation of esophageal carcinoma development in miR-31 knockout rats. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6075-6085.	7.1	19
77	FLT4 Receptor Tyrosine Kinase Gene Mapping to Chromosome Band 5q35 in Relation to the t(2;5), t(5;6), and t(3;5) Translocations. Genes Chromosomes and Cancer, 1993, 7, 144-151.	2.8	18
78	Effect of zinc supplementation on N-nitrosomethylbenzylamine-induced forestomach tumor development and progression in tumor suppressor-deficient mouse strains. Carcinogenesis, 2011, 32, 351-358.	2.8	18
79	The ubiquitous â€~cancer mutational signature' 5 occurs specifically in cancers with deleted <i>FHIT</i> alleles. Oncotarget, 2017, 8, 102199-102211.	1.8	17
80	Primary cervical carcinomas show 2 common regions of deletion at 3P, 1 within theFHIT gene: Evaluation of allelic imbalance atFHIT, RB1 andTP53 in relation to survival. International Journal of Cancer, 2000, 88, 217-222.	5.1	16
81	Fhit-Deficient Hematopoietic Stem Cells Survive Hydroquinone Exposure Carrying Precancerous Changes. Cancer Research, 2008, 68, 3662-3670.	0.9	14
82	Exomeâ€wide singleâ€base substitutions in tissues and derived cell lines of the constitutive Fhit knockout mouse. Cancer Science, 2016, 107, 528-535.	3.9	14
83	Cancer Prevention and Therapy in a Preclinical Mouse Model: Impact of FHIT Viruses. Current Gene Therapy, 2004, 4, 53-63.	2.0	13
84	Fhit and Wwox loss-associated genome instability: A genome caretaker one-two punch. Advances in Biological Regulation, 2017, 63, 167-176.	2.3	13
85	Receptor Protein Tyrosine Phosphatase Gamma, Ptpγ, Regulates Hematopoietic Differentiation. Blood, 1997, 90, 49-57.	1.4	13
86	Chromosomal localization of four human zinc finger cDNAs. Human Genetics, 1993, 91, 217-222.	3.8	10
87	Identification of Fhit as a post-transcriptional effector of Thymidine Kinase 1 expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 374-382.	1.9	10
88	Hypermethylation patterns in theFhit regulatory region are tissue specific. Molecular Carcinogenesis, 2005, 43, 175-181.	2.7	9
89	Reduction in squamous cell carcinomas in mouse skin by dietary zinc supplementation. Cancer Medicine, 2016, 5, 2032-2042.	2.8	9
90	Fhit loss in lung preneoplasia: Relation to DNA damage response checkpoint activation. Cancer Letters, 2010, 291, 230-236.	7.2	8

#	Article	IF	CITATIONS
91	Fhit lossâ€associated initiation and progression of neoplasia <i>in vitro</i> . Cancer Science, 2016, 107, 1590-1598.	3.9	8
92	Characterization of human bone marrow-derived closed circular DNA clones. Genes Chromosomes and Cancer, 1993, 7, 15-27.	2.8	7
93	Study of FHIT and WWOX expression in mucoepidermoid carcinoma and adenoid cystic carcinoma of salivary gland. Oral Oncology, 2010, 46, 195-199.	1.5	7
94	DNA fragility put into context. Nature, 2011, 470, 46-47.	27.8	5
95	Fhit down-regulation is an early event in pancreatic carcinogenesis. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2017, 470, 647-653.	2.8	5
96	Expression of fhit protein during mouse development. The Anatomical Record, 2000, 260, 208-211.	1.8	4
97	Loss of fragile histidine triad (Fhit) protein expression alters the translation of cancer-associated mRNAs. BMC Research Notes, 2018, 11, 178.	1.4	4
98	Interaction of Wwox with Brca1 and associated complex proteins prevents premature resection at double-strand breaks and aberrant homologous recombination. DNA Repair, 2022, 110, 103264.	2.8	4
99	Fhit expression in gastric adenocarcinoma. Cancer, 2000, 88, 24-34.	4.1	3
100	Deletion mapping of chromosome region 9p21â€p22 surrounding the CDKN2 locus in melanoma. International Journal of Cancer, 1996, 65, 762-767.	5.1	3
101	Wwox Binding to the Murine Brca1-BRCT Domain Regulates Timing of Brip1 and CtIP Phospho-Protein Interactions with This Domain at DNA Double-Strand Breaks, and Repair Pathway Choice. International Journal of Molecular Sciences, 2022, 23, 3729.	4.1	2
102	Expression of fhit protein during mouse development. , 2000, 260, 208.		1
103	PREFACE. Genes Chromosomes and Cancer, 2019, 58, 257-259.	2.8	0

104 WWOX. , 2017, , 4863-4867.

0