Stephanie Hui Kit Yap

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3759135/publications.pdf

Version: 2024-02-01

15 papers	418 citations	9 h-index	1199594 12 g-index
15	15	15	669 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Engineered Nucleotide Chemicapacitive Microsensor Array Augmented with Physicsâ€Guided Machine Learning for Highâ€Throughput Screening of Cannabidiol. Small, 2022, 18, e2107659.	10.0	2
2	Water-stable Perovskite Quantum Dots-based FRET Nanosensor for the Detection of Rhodamine 6G in Water, Food, and Biological Samples. Microchemical Journal, 2022, 180, 107624.	4.5	13
3	Two-Dimensional MoS ₂ Nanosheet-Functionalized Optical Microfiber for Room-Temperature Volatile Organic Compound Detection. ACS Applied Nano Materials, 2021, 4, 13440-13449.	5.0	10
4	A First Study of the Kinetics of Metal Ion Adsorption at Solid/Liquid Interface using Evanescent Wave-based Optical Microfiber. IEEE Sensors Journal, 2020, , 1-1.	4.7	2
5	Investigation of a Bragg Grating-Based Fabry–Perot Structure Inscribed Using Femtosecond Laser Micromachining in an Adiabatic Fiber Taper. Applied Sciences (Switzerland), 2020, 10, 1069.	2.5	9
6	Carbon Allotrope-Based Optical Fibers for Environmental and Biological Sensing: A Review. Sensors, 2020, 20, 2046.	3.8	21
7	Carbon Dot-functionalized Interferometric Optical Fiber Sensor for Detection of Ferric Ions in Biological Samples. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28546-28553.	8.0	59
8	Factors Influencing Metal Binding Efficiency at Solid/Liquid Interface: An Investigation for the Prediction of Heavy Metal Ion Sensing Performance. , 2019, , .		1
9	Solid State Carbon Dots-Based Sensor Using Optical Microfiber for Ferric Ion Detection. , 2019, , .		3
10	NIRâ€responsive nanomaterials and their applications; upconversion nanoparticles and carbon dots: a perspective. Journal of Chemical Technology and Biotechnology, 2018, 93, 1519-1528.	3.2	37
11	An Advanced Hand-Held Microfiber-Based Sensor for Ultrasensitive Lead Ion Detection. ACS Sensors, 2018, 3, 2506-2512.	7.8	51
12	Biogreen Synthesis of Carbon Dots for Biotechnology and Nanomedicine Applications. Nano-Micro Letters, 2018, 10, 72.	27.0	133
13	Functionalized Fiber End Superstructure Fiber Bragg Grating Refractive Index Sensor for Heavy Metal Ion Detection. Sensors, 2018, 18, 1821.	3.8	18
14	Fiber gratings enabled interrogation of Mach-Zehnder interferometer tapered fiber sensor., 2017,,.		0
15	Detection of low-concentration heavy metal ions using optical microfiber sensor. Sensors and Actuators B: Chemical, 2016, 237, 142-149.	7.8	59