Kenneth J Rothschild

List of Publications by Citations

Source: https://exaly.com/author-pdf/3758974/kenneth-j-rothschild-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

139 6,830 47 78 g-index

144 7,159 5.3 5.27 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
139	Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. <i>Biochemistry</i> , 1988 , 27, 8516-20	3.2	499
138	FTIR difference spectroscopy of bacteriorhodopsin: toward a molecular model. <i>Journal of Bioenergetics and Biomembranes</i> , 1992 , 24, 147-67	3.7	278
137	Fourier transform infrared techniques for probing membrane protein structure. <i>Annual Review of Biophysics and Biophysical Chemistry</i> , 1988 , 17, 541-70		235
136	Polarized infrared spectroscopy of oriented purple membrane. <i>Biophysical Journal</i> , 1979 , 25, 473-87	2.9	231
135	Spontaneous, pH-dependent membrane insertion of a transbilayer alpha-helix. <i>Biochemistry</i> , 1997 , 36, 15177-92	3.2	204
134	Protein dynamics in the bacteriorhodopsin photocycle: submillisecond Fourier transform infrared spectra of the L, M, and N photointermediates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1991 , 88, 2388-92	11.5	168
133	A biophysical study of integral membrane protein folding. <i>Biochemistry</i> , 1997 , 36, 15156-76	3.2	163
132	Surface-induced lamellar orientation of multilayer membrane arrays. Theoretical analysis and a new method with application to purple membrane fragments. <i>Biophysical Journal</i> , 1980 , 31, 65-96	2.9	144
131	Conformational changes of bacteriorhodopsin detected by Fourier transform infrared difference spectroscopy. <i>Biochemical and Biophysical Research Communications</i> , 1981 , 103, 483-9	3.4	143
130	Stabilization of the membrane protein bacteriorhodopsin to 140 $^{\circ}$ C in two-dimensional films. <i>Nature</i> , 1993 , 366, 48-50	50.4	139
129	Millisecond Fourier-transform infrared difference spectra of bacteriorhodopsin's M412 photoproduct. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1987 , 84, 5221-5	11.5	127
128	Structural model of the phospholamban ion channel complex in phospholipid membranes. <i>Journal of Molecular Biology</i> , 1995 , 248, 824-34	6.5	118
127	Evidence for a tyrosine protonation change during the primary phototransition of bacteriorhodopsin at low temperature. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1986 , 83, 347-51	11.5	117
126	Infrared evidence that the Schiff base of bacteriorhodopsin is protonated: bR570 and K intermediates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1982 , 79, 4045-9	11.5	116
125	Orientation of the bacteriorhodopsin chromophore probed by polarized Fourier transform infrared difference spectroscopy. <i>Biochemistry</i> , 1986 , 25, 7793-8	3.2	101
124	Anomalous amide I infrared absorption of purple membrane. <i>Science</i> , 1979 , 204, 311-2	33.3	100
123	Detection of a water molecule in the active-site of bacteriorhodopsin: hydrogen bonding changes during the primary photoreaction. <i>Biochemistry</i> , 1994 , 33, 12757-62	3.2	99

(2005-1987)

122	Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 1. M412 and L550 intermediates. <i>Biochemistry</i> , 1987 , 26, 6696-707	3.2	98
121	Cell-free co-expression of functional membrane proteins and apolipoprotein, forming soluble nanolipoprotein particles. <i>Molecular and Cellular Proteomics</i> , 2008 , 7, 2246-53	7.6	93
120	Vibrational spectroscopy of bacteriorhodopsin mutants: I. Tyrosine-185 protonates and deprotonates during the photocycle. <i>Proteins: Structure, Function and Bioinformatics</i> , 1988 , 3, 219-29	4.2	93
119	Polarized Fourier transform infrared spectroscopy of bacteriorhodopsin. Transmembrane alpha helices are resistant to hydrogen/deuterium exchange. <i>Biophysical Journal</i> , 1990 , 58, 1539-46	2.9	92
118	Fourier transform infrared difference spectroscopy of rhodopsin mutants: light activation of rhodopsin causes hydrogen-bonding change in residue aspartic acid-83 during meta II formation. <i>Biochemistry</i> , 1993 , 32, 10277-82	3.2	86
117	Fourier transform infrared evidence for Schiff base alteration in the first step of the bacteriorhodopsin photocycle. <i>Biochemistry</i> , 1984 , 23, 6103-9	3.2	86
116	A spectroscopic study of rhodopsin alpha-helix orientation. <i>Biophysical Journal</i> , 1980 , 31, 53-64	2.9	84
115	Site-directed isotope labeling and ATR-FTIR difference spectroscopy of bacteriorhodopsin: the peptide carbonyl group of Tyr 185 is structurally active during the bR>N transition. <i>Biochemistry</i> , 1995 , 34, 2-6	3.2	82
114	Time-resolved Fourier transform infrared spectroscopy of the bacteriorhodopsin mutant Tyr-185>Phe: Asp-96 reprotonates during O formation; Asp-85 and Asp-212 deprotonate during O decay. <i>Photochemistry and Photobiology</i> , 1992 , 56, 1085-95	3.6	80
113	Fourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban. <i>Biophysical Journal</i> , 1996 , 70, 1728-36	2.9	77
112	Substitution of membrane-embedded aspartic acids in bacteriorhodopsin causes specific changes in different steps of the photochemical cycle. <i>Biochemistry</i> , 1989 , 28, 10035-42	3.2	72
111	Nanometer molecular lithography. <i>Applied Physics Letters</i> , 1986 , 48, 676-678	3.4	70
110	Photoexcitation of rhodopsin: conformation changes in the chromophore, protein and associated lipids as determined by FTIR difference spectroscopy. <i>Photochemistry and Photobiology</i> , 1988 , 48, 497-5	5 6 34 ⁶	66
109	Fourier transform infrared difference spectroscopy of the nicotinic acetylcholine receptor: evidence for specific protein structural changes upon desensitization. <i>Biochemistry</i> , 1993 , 32, 5448-54	3.2	65
108	His-75 in proteorhodopsin, a novel component in light-driven proton translocation by primary pumps. <i>Journal of Biological Chemistry</i> , 2009 , 284, 2836-2843	5.4	64
107	Incorporation of the nicotinic acetylcholine receptor into planar multilamellar films: characterization by fluorescence and Fourier transform infrared difference spectroscopy. <i>Biophysical Journal</i> , 1992 , 61, 983-92	2.9	60
106	Site-directed isotope labelling and FTIR spectroscopy of bacteriorhodopsin. <i>Nature Structural Biology</i> , 1994 , 1, 512-7		59
105	Conformational dynamics of amyloid beta-protein assembly probed using intrinsic fluorescence. <i>Biochemistry</i> , 2005 , 44, 13365-76	3.2	58

104	Opsin structure probed by raman spectroscopy of photoreceptor membranes. <i>Science</i> , 1976 , 191, 1176	5-83.3	58
103	Fourier transform infrared study of the halorhodopsin chloride pump. <i>Biochemistry</i> , 1988 , 27, 2420-4	3.2	57
102	Ultrasensitive fluorescence-based detection of nascent proteins in gels. <i>Analytical Biochemistry</i> , 2000 , 279, 218-25	3.1	56
101	Fourier transform infrared evidence for a predominantly alpha-helical structure of the membrane bound channel forming COOH-terminal peptide of colicin E1. <i>Biophysical Journal</i> , 1991 , 59, 516-22	2.9	56
100	Structural changes in the photoactive site of proteorhodopsin during the primary photoreaction. <i>Biochemistry</i> , 2004 , 43, 9075-83	3.2	55
99	Evidence for rhodopsin refolding during the decay of Meta II. <i>Biophysical Journal</i> , 1987 , 51, 345-50	2.9	52
98	Primary photochemistry of bacteriorhodopsin: comparison of Fourier transform infrared difference spectra with resonance Raman spectra. <i>Photochemistry and Photobiology</i> , 1984 , 40, 675-9	3.6	52
97	Photocleavable biotin phosphoramidite for 5Send-labeling, affinity purification and phosphorylation of synthetic oligonucleotides. <i>Nucleic Acids Research</i> , 1996 , 24, 361-6	20.1	51
96	Anti-kelch-like 12 and anti-hexokinase 1: novel autoantibodies in primary biliary cirrhosis. <i>Liver International</i> , 2015 , 35, 642-51	7.9	48
95	A high-throughput nonisotopic protein truncation test. <i>Nature Biotechnology</i> , 2003 , 21, 194-7	44.5	48
94	Vibrational spectroscopy of bacteriorhodopsin mutants: chromophore isomerization perturbs tryptophan-86. <i>Biochemistry</i> , 1989 , 28, 7052-9	3.2	47
93	Conformational changes in bacteriorhodopsin studied by infrared attenuated total reflection. <i>Biophysical Journal</i> , 1987 , 52, 629-35	2.9	47
92	Nonequilibrium linear behavior of biological systems. Existence of enzyme-mediated multidimensional inflection points. <i>Biophysical Journal</i> , 1980 , 30, 209-30	2.9	44
91	X-ray diffraction and electron microscope study of phase separation in rod outer segment photoreceptor membrane multilayers. <i>Biophysical Journal</i> , 1982 , 39, 241-51	2.9	44
90	Conformational changes detected in a sensory rhodopsin II-transducer complex. <i>Journal of Biological Chemistry</i> , 2003 , 278, 36556-62	5.4	43
89	Cell-free N-terminal protein labeling using initiator suppressor tRNA. <i>Analytical Biochemistry</i> , 2004 , 326, 25-32	3.1	42
88	Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I. <i>Biochemistry</i> , 1996 , 35, 6690-6	3.2	42
87	The Schiff base counterion of bacteriorhodopsin is protonated in sensory rhodopsin I: spectroscopic and functional characterization of the mutated proteins D76N and D76A.	3.2	42

(1991-1995)

86	Effect of carboxyl mutations on functional properties of bovine rhodopsin. <i>Biophysical Chemistry</i> , 1995 , 56, 79-87	3.5	42	
85	Photoactivation of rhodopsin causes an increased hydrogen-deuterium exchange of buried peptide groups. <i>Biophysical Journal</i> , 1998 , 74, 192-8	2.9	41	
84	Conformational changes in the photocycle of Anabaena sensory rhodopsin: absence of the Schiff base counterion protonation signal. <i>Journal of Biological Chemistry</i> , 2006 , 281, 15208-14	5.4	40	
83	Photoactivation of rhodopsin involves alterations in cysteine side chains: detection of an S-H band in the Meta I>Meta II FTIR difference spectrum. <i>Biophysical Journal</i> , 1994 , 66, 2085-91	2.9	40	
82	Biomolecular/solid-state nanoheterostructures. <i>Applied Physics Letters</i> , 1990 , 56, 692-694	3.4	39	
81	Vibrational spectroscopy of bacteriorhodopsin mutants: evidence for the interaction of proline-186 with the retinylidene chromophore. <i>Biochemistry</i> , 1990 , 29, 5954-60	3.2	39	
80	FTIR evidence for tryptophan perturbations during the bacteriorhodopsin photocycle. <i>Journal of the American Chemical Society</i> , 1988 , 110, 7223-7224	16.4	39	
79	Fourier transform Raman spectroscopy of the bacteriorhodopsin mutant Tyr-185>Phe: formation of a stable O-like species during light adaptation and detection of its transient N-like photoproduct. <i>Biochemistry</i> , 1993 , 32, 2272-81	3.2	38	
78	Fourier transform infrared spectroscopic evidence for the existence of two conformations of the bacteriorhodopsin primary photoproduct at low temperature. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1985 , 808, 140-8	4.6	38	
77	FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor. <i>Biochemistry</i> , 2000 , 39, 2823-30	3.2	37	
76	Tyrosine structural changes detected during the photoactivation of rhodopsin. <i>Journal of Biological Chemistry</i> , 1998 , 273, 23735-9	5.4	36	
75	Probing conformational changes in the nicotinic acetylcholine receptor by Fourier transform infrared difference spectroscopy. <i>Biophysical Journal</i> , 1992 , 62, 64-6	2.9	36	
74	Photoactivation perturbs the membrane-embedded contacts between sensory rhodopsin II and its transducer. <i>Journal of Biological Chemistry</i> , 2005 , 280, 28365-9	5.4	35	
73	Static and time-resolved absorption spectroscopy of the bacteriorhodopsin mutant Tyr-185>Phe: evidence for an equilibrium between bR570 and an O-like species. <i>Biochemistry</i> , 1993 , 32, 2263-71	3.2	35	
72	Raman spectroscopy reveals direct chromophore interactions in the Leu/Gln105 spectral tuning switch of proteorhodopsins. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 11770-6	3.4	33	
71	A Fourier transform infrared study of Neurospora rhodopsin: similarities with archaeal rhodopsins. <i>Photochemistry and Photobiology</i> , 2002 , 76, 341-9	3.6	33	
70	Cell-free synthesis, functional refolding, and spectroscopic characterization of bacteriorhodopsin, an integral membrane protein. <i>Biochemistry</i> , 1993 , 32, 13777-81	3.2	33	
69	Conformational changes in sensory rhodopsin I: similarities and differences with bacteriorhodopsin, halorhodopsin, and rhodopsin. <i>Biochemistry</i> , 1991 , 30, 5395-400	3.2	33	

68	Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 2. Tyrosines-26 and -64. <i>Biochemistry</i> , 1987 , 26, 6708-17	3.2	33
67	Raman spectroscopic study of the valinomycinKSCN complex. <i>Journal of Molecular Biology</i> , 1974 , 89, 205-22	6.5	33
66	Photocleavable peptide-DNA conjugates: synthesis and applications to DNA analysis using MALDI-MS. <i>Nucleic Acids Research</i> , 1999 , 27, 4626-31	20.1	32
65	FTIR difference spectroscopy of the bacteriorhodopsin mutant Tyr-185>Phe: detection of a stable O-like species and characterization of its photocycle at low temperature. <i>Biochemistry</i> , 1993 , 32, 2282-	90 ^{3.2}	31
64	Quantitative analysis of resonance Raman spectra of purple membrane from Halobacterium halobium: L550 intermediate. <i>Biochemistry</i> , 1983 , 22, 3460-3466	3.2	29
63	Substitution of amino acids in helix F of bacteriorhodopsin: effects on the photochemical cycle. <i>Biochemistry</i> , 1989 , 28, 10028-34	3.2	27
62	Retinal chromophore structure and Schiff base interactions in red-shifted channelrhodopsin-1 from Chlamydomonas augustae. <i>Biochemistry</i> , 2014 , 53, 3961-70	3.2	26
61	Protonation state of Glu142 differs in the green- and blue-absorbing variants of proteorhodopsin. <i>Biochemistry</i> , 2008 , 47, 3447-53	3.2	26
60	INFRARED STUDIES OF BACTERIORHODOPSIN. Photochemistry and Photobiology, 1988, 47, 883-887	3.6	26
59	Incorporation of photoreceptor membrane into a multilamellar film. <i>Biophysical Journal</i> , 1980 , 31, 45-5	2 2.9	26
58	Raman spectroscopy of uncomplexed valinomycin. 2. Nonpolar and polar solution. <i>Journal of the American Chemical Society</i> , 1977 , 99, 2032-9	16.4	26
57	Near-IR resonance Raman spectroscopy of archaerhodopsin 3: effects of transmembrane potential. Journal of Physical Chemistry B, 2012 , 116, 14592-601	3.4	25
56	Subpicosecond protein backbone changes detected during the green-absorbing proteorhodopsin primary photoreaction. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 11824-31	3.4	25
55	Ultrasensitive measurements of microbial rhodopsin photocycles using photochromic FRET. <i>Photochemistry and Photobiology</i> , 2012 , 88, 90-7	3.6	23
54	Conformational changes in the core structure of bacteriorhodopsin. <i>Biochemistry</i> , 1998 , 37, 10279-85	3.2	23
53	tRNA-mediated protein engineering. Current Opinion in Biotechnology, 1999, 10, 64-70	11.4	22
52	N-terminal labeling of proteins using initiator tRNA. <i>Methods</i> , 2005 , 36, 252-60	4.6	21
51	Site-directed isotope labeling and FTIR spectroscopy: assignment of tyrosine bands in the bR>M difference spectrum of bacteriorhodopsin. <i>Biophysical Chemistry</i> , 1995 , 56, 63-70	3.5	21

50	Photocleavable aminotag phosphoramidites for 5Stermini DNA/RNA labeling. <i>Nucleic Acids Research</i> , 1998 , 26, 3572-6	20.1	20	
49	Resonance Raman Study of an Anion Channelrhodopsin: Effects of Mutations near the Retinylidene Schiff Base. <i>Biochemistry</i> , 2016 , 55, 2371-80	3.2	20	
48	Photocleavable affinity tags for isolation and detection of biomolecules. <i>Methods in Enzymology</i> , 1998 , 291, 135-54	1.7	19	
47	Proton transfers in a channelrhodopsin-1 studied by Fourier transform infrared (FTIR) difference spectroscopy and site-directed mutagenesis. <i>Journal of Biological Chemistry</i> , 2015 , 290, 12719-30	5.4	18	
46	Methionine changes in bacteriorhodopsin detected by FTIR and cell-free selenomethionine substitution. <i>Biophysical Journal</i> , 2003 , 84, 960-6	2.9	17	
45	Bacteriorhodopsin M412 and BR605 protein conformations are similar Significance for proton transport. <i>FEBS Letters</i> , 1987 , 223, 289-293	3.8	17	
44	Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer. <i>Biochemistry</i> , 1997 , 36, 7490-7	3.2	16	
43	Photochemical control of the infectivity of adenoviral vectors using a novel photocleavable biotinylation reagent. <i>Chemistry and Biology</i> , 2002 , 9, 567-73		16	
42	Probing intramolecular orientations in rhodopsin and metarhodopsin II by polarized infrared difference spectroscopy. <i>Biochemistry</i> , 1999 , 38, 13200-9	3.2	16	
41	Site-Directed Isotope Labeling and FT-IR Spectroscopy: The Tyr 185/Pro 186 Peptide Bond of Bacteriorhodopsin Is Perturbed during the Primary Photoreaction. <i>Journal of the American Chemical Society</i> , 1995 , 117, 11614-11615	16.4	15	
40	Raman spectroscopy of uncomplexed valinomycin. I. The solid state. <i>Journal of the American Chemical Society</i> , 1977 , 99, 2024-32	16.4	15	
39	Conformational changes in the archaerhodopsin-3 proton pump: detection of conserved strongly hydrogen bonded water networks. <i>Journal of Biological Physics</i> , 2012 , 38, 153-68	1.6	14	
38	Comparison of the structural changes occurring during the primary phototransition of two different channelrhodopsins from Chlamydomonas algae. <i>Biochemistry</i> , 2015 , 54, 377-88	3.2	14	
37	Multiplexed VeraCode bead-based serological immunoassay for colorectal cancer. <i>Journal of Immunological Methods</i> , 2013 , 400-401, 58-69	2.5	13	
36	An ELISA-based high throughput protein truncation test for inherited breast cancer. <i>Breast Cancer Research</i> , 2010 , 12, R78	8.3	13	
35	Models of ionic transport in biological membranes. Raman spectroscopy as a probe of valinomycin, gramicidin AŞ and rhodopsin conformations. <i>American Journal of Clinical Pathology</i> , 1975 , 63, 695-713	1.9	13	
34	The early development and application of FTIR difference spectroscopy to membrane proteins: A personal perspective. <i>Biomedical Spectroscopy and Imaging</i> , 2016 , 5, 231-267	1.3	12	
33	Similarity of bacteriorhodopsin structural changes triggered by chromophore removal and light-driven proton transport. <i>FEBS Letters</i> , 1997 , 407, 285-8	3.8	12	

32	Different structural changes occur in blue- and green-proteorhodopsins during the primary photoreaction. <i>Biochemistry</i> , 2008 , 47, 11490-8	3.2	12
31	Matrix-assisted laser desorption/ionization mass spectrometry of DNA using photocleavable biotin. <i>New Biotechnology</i> , 1999 , 16, 127-33		11
30	Protein conformational changes during the bacteriorhodopsin photocycle. A Fourier transform infrared/resonance Raman study of the alkaline form of the mutant Asp-85>Asn. <i>Journal of Biological Chemistry</i> , 1995 , 270, 29746-51	5.4	10
29	Structural Changes in an Anion Channelrhodopsin: Formation of the K and L Intermediates at 80 K. <i>Biochemistry</i> , 2017 , 56, 2197-2208	3.2	9
28	Photocleavage-based affinity purification and printing of cell-free expressed proteins: application to proteome microarrays. <i>Analytical Biochemistry</i> , 2008 , 383, 103-15	3.1	9
27	Proteome-wide drug screening using mass spectrometric imaging of bead-arrays. <i>Scientific Reports</i> , 2016 , 6, 26125	4.9	9
26	Redshifted and Near-infrared Active Analog Pigments Based upon Archaerhodopsin-3. <i>Photochemistry and Photobiology</i> , 2019 , 95, 959-968	3.6	8
25	Fourier transform infrared studies of an active proton transport pump. <i>Methods in Enzymology</i> , 1986 , 127, 343-53	1.7	8
24	Highly Multiplexed Immunohistochemical MALDI-MS Imaging of Biomarkers in Tissues. <i>Journal of the American Society for Mass Spectrometry</i> , 2021 , 32, 977-988	3.5	8
23	Raman spectroscopy of a near infrared absorbing proteorhodopsin: Similarities to the bacteriorhodopsin O photointermediate. <i>PLoS ONE</i> , 2018 , 13, e0209506	3.7	8
22	Correlated matrix-assisted laser desorption/ionization mass spectrometry and fluorescent imaging of photocleavable peptide-coded random bead-arrays. <i>Rapid Communications in Mass Spectrometry</i> , 2014 , 28, 49-62	2.2	7
21	Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals. <i>IUCrJ</i> , 2018 , 5, 103-117	4.7	7
20	Active water in protein-protein communication within the membrane: the case of SRII-HtrII signal relay. <i>Biochemistry</i> , 2009 , 48, 811-3	3.2	6
19	Detection of threonine structural changes upon formation of the M-intermediate of bacteriorhodopsin: evidence for assignment to Thr-89. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1998 , 1365, 363-72	4.6	6
18	Asp 46 can substitute Asp 96 as the Schiff base proton donor in bacteriorhodopsin. <i>Biochemistry</i> , 1995 , 34, 15599-606	3.2	6
17	Electronic Preresonance Stimulated Raman Scattering Imaging of Red-Shifted Proteorhodopsins: Toward Quantitation of the Membrane Potential. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 4374-	-4384	5
16	A Fourier Transform Infrared Study of Neurospora Rhodopsin: Similarities with Archaeal Rhodopsins¶□ <i>Photochemistry and Photobiology</i> , 2007 , 76, 341-349	3.6	4
15	[76] Kinetic resonance raman spectroscopy of purple membrane using rotating sample. <i>Methods in Enzymology</i> , 1982 , 88, 643-648	1.7	4

LIST OF PUBLICATIONS

14	The crystal structure of bromide-bound ACR1 reveals a pre-activated state in the transmembrane anion tunnel. <i>ELife</i> , 2021 , 10,	8.9	4
13	Circular dichroism of oriented photoreceptor membrane film. <i>Biochemical and Biophysical Research Communications</i> , 1980 , 94, 618-24	3.4	3
12	Cell-free protein synthesis systems: biotechnological applications. <i>Biotechnology and Genetic Engineering Reviews</i> , 2006 , 22, 151-69	4.1	2
11	FTIR spectroscopy, site-directed mutagenesis, and isotope labeling: a new approach for studying membrane proteins 1992 , 1575, 109		2
10	Composite Biomolecular/Solid State Nanostructures. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 174, 151		2
9	Photoactivation of rhodopsin: interplay between protein and chromophore. <i>Novartis Foundation Symposium</i> , 1999 , 224, 102-18; discussion 118-23		2
8	Analog Retinal Redshifts Visible Absorption of QuasAr Transmembrane Voltage Sensors into Near-infrared. <i>Photochemistry and Photobiology</i> , 2020 , 96, 55-66	3.6	2
7	Site-directed isotope labeling of membrane proteins: A new tool for spectroscopists. <i>Techniques in Protein Chemistry</i> , 1996 , 7, 151-159		1
6	Water molecules are active during the primary photoreaction of bacteriorhodopsin 1994 , 2089, 118		1
5	Photocleavage-based affinity purification of biomarkers from serum: Application to multiplex allergy testing. <i>PLoS ONE</i> , 2018 , 13, e0191987	3.7	О
4	Optical Switching Between Long-lived States of Opsin Transmembrane Voltage Sensors. <i>Photochemistry and Photobiology</i> , 2021 , 97, 1001-1015	3.6	O
3	Ftir Spectroscopy: The Detection Of Individual Chemical Groups In Complex Biomolecules 1989 , 1057, 44		
2	Protein Truncation Test (PTT) 2004, 1089-1094		
1	THE MOLECULAR ORGANIZATION AND FUNCTION OF BIOLOGICAL MEMBRANES: A POSSIBLE MICROSCOPIC PICTURE OF IONIC PERMEATION 1972 , 49-79		