Jian Guan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3758740/publications.pdf

Version: 2024-02-01

		201674	214800
50	2,258	27	47
papers	citations	h-index	g-index
50	50	50	2377
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Effects of IGF-1 Treatment after Hypoxic-Ischemic Brain Injury in Adult Rats. Journal of Cerebral Blood Flow and Metabolism, 1993, 13, 609-616.	4.3	199
2	Vascular Degeneration in <scp>P</scp> arkinson's Disease. Brain Pathology, 2013, 23, 154-164.	4.1	136
3	The Role of Gangliosides in Neurodevelopment. Nutrients, 2015, 7, 3891-3913.	4.1	132
4	Window of Opportunity of Cerebral Hypothermia for Postischemic White Matter Injury in the Near-Term Fetal Sheep. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 877-886.	4.3	111
5	Insulin-Like Growth Factor (IGF)-1 Suppresses Oligodendrocyte Caspase-3 Activation and Increases Glial Proliferation after Ischemia in Near-Term Fetal Sheep. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 739-747.	4.3	110
6	Neuronal rescue with transforming growth factor- \hat{l}^21 after hypoxic-ischaemic brain injury. NeuroReport, 1994, 5, 901-904.	1.2	108
7	Insulin-Like Growth Factor-1 Reduces Postischemic White Matter Injury in Fetal Sheep. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 493-502.	4.3	105
8	N-terminal tripeptide of IGF-1 (GPE) prevents the loss of TH positive neurons after 6-OHDA induced nigral lesion in rats. Brain Research, 2000, 859, 286-292.	2.2	95
9	Key Neuroprotective Role for Endogenous Adenosine A 1 Receptor Activation During Asphyxia in the Fetal Sheep. Stroke, 2003, 34, 2240-2245.	2.0	94
10	Fetal heart rate variability and brain stem injury after asphyxia in preterm fetal sheep. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R925-R933.	1.8	94
11	The Window of Opportunity for Neuronal Rescue with Insulin-Like Growth Factor-1 after Hypoxia—Ischemia in Rats is Critically Modulated by Cerebral Temperature during Recovery. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 513-519.	4.3	78
12	Maturational Change in the Cortical Response to Hypoperfusion Injury in the Fetal Sheep. Pediatric Research, 1998, 43, 674-682.	2.3	78
13	A Role for the Somatotropic Axis in Neural Development, Injury and Disease. Journal of Pediatric Endocrinology and Metabolism, 2000, 13, 1483-1492.	0.9	73
14	Neuroprotective effects of the N-terminal tripeptide of insulin-like growth factor-1, glycine-proline-glutamate (GPE) following intravenous infusion in hypoxic–ischemic adult rats. Neuropharmacology, 2004, 47, 892-903.	4.1	72
15	Supplementation with a mixture of complex lipids derived from milk to growing rats results in improvements in parameters related to growth and cognition. Nutrition Research, 2009, 29, 426-435.	2.9	64
16	Maternal supplementation with a complex milk lipid mixture during pregnancy and lactation alters neonatal brain lipid composition but lacks effect on cognitive function in rats. Nutrition Research, 2010, 30, 279-289.	2.9	48
17	IGF†derived small neuropeptides and analogues: a novel strategy for the development of pharmaceuticals for neurological conditions. British Journal of Pharmacology, 2009, 157, 881-891.	5.4	47
18	Supplementation of Blackcurrant Anthocyanins Increased Cyclic Glycine-Proline in the Cerebrospinal Fluid of Parkinson Patients: Potential Treatment to Improve Insulin-Like Growth Factor-1 Function. Nutrients, 2018, 10, 714.	4.1	44

#	Article	IF	CITATIONS
19	Peripheral administration of a novel diketopiperazine, NNZ 2591, prevents brain injury and improves somatosensory-motor function following hypoxia–ischemia in adult rats. Neuropharmacology, 2007, 53, 749-762.	4.1	43
20	String Vessel Formation is Increased in the Brain of Parkinson Disease. Journal of Parkinson's Disease, 2015, 5, 821-836.	2.8	40
21	Cyclic glycine-proline regulates IGF-1 homeostasis by altering the binding of IGFBP-3 to IGF-1. Scientific Reports, 2014, 4, 4388.	3.3	39
22	The role for IGF-1-derived small neuropeptides as a therapeutic target for neurological disorders. Expert Opinion on Therapeutic Targets, 2015, 19, 785-793.	3.4	36
23	Intracerebral transportation and cellular localisation of insulin-like growth factor-1 following central administration to rats with hypoxic–ischemic brain injury. Brain Research, 2000, 853, 163-173.	2.2	33
24	Long-Term Supplementation with Beta Serum Concentrate (BSC), a Complex of Milk Lipids, during Post-Natal Brain Development Improves Memory in Rats. Nutrients, 2015, 7, 4526-4541.	4.1	33
25	Delayed Peripheral Administration of a GPE Analogue Induces Astrogliosis and Angiogenesis and Reduces Inflammation and Brain Injury following Hypoxia-Ischemia in the Neonatal Rat. Developmental Neuroscience, 2007, 29, 393-402.	2.0	32
26	Correlation of cellular changes and spatial memory during aging in rats. Experimental Gerontology, 2008, 43, 929-938.	2.8	31
27	Insulin-Like Growth Factor-1 and its Derivatives: Potential Pharmaceutical Application for Ischemic Brain Injury. Recent Patents on CNS Drug Discovery, 2008, 3, 112-127.	0.9	31
28	Age-related memory decline is associated with vascular and microglial degeneration in aged rats. Behavioural Brain Research, 2012, 235, 210-217.	2.2	26
29	NNZ-2591, a novel diketopiperazine, prevented scopolamine-induced acute memory impairment in the adult rat. Behavioural Brain Research, 2010, 210, 221-228.	2.2	25
30	Maternally Administered Cyclic Glycine-Proline Increases Insulin-Like Growth Factor-1 Bioavailability and Novelty Recognition in Developing Offspring. Endocrinology, 2016, 157, 3130-3139.	2.8	20
31	Insulin-Like Growth Factor-1 and its Derivatives: Potential Pharmaceutical Application for Treating Neurological Conditions. Recent Patents on CNS Drug Discovery, 2013, 8, 142-160.	0.9	19
32	TGFÎ ² -1 and neurological function after hypoxia-ischemia in adult rats. NeuroReport, 2004, 15, 961-964.	1.2	18
33	Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density. Food and Nutrition Research, 2015, 59, 25765.	2.6	17
34	The Role of the Growth Factors IGF-1 and TGF?1after Hypoxic-Ischemic Brain Injury. Annals of the New York Academy of Sciences, 1995, 765, 306-307.	3.8	16
35	Delayed peripheral administration of the N-terminal tripeptide of IGF-1 (GPE) reduces brain damage following microsphere induced embolic damage in young adult and aged rats. Neuroscience Letters, 2009, 454, 53-57.	2.1	16
36	Plasma cyclic glycine proline/ <scp>IGF</scp> â€l ratio predicts clinical outcome and recovery in stroke patients. Annals of Clinical and Translational Neurology, 2019, 6, 669-677.	3.7	16

#	Article	IF	Citations
37	Supplementation of complex milk lipid concentrate (CMLc) improved the memory of aged rats. Nutritional Neuroscience, 2015, 18, 22-29.	3.1	15
38	Insulin-Like Growth Factor -1 (IGF-1) Derived Neuropeptides, a Novel Strategy for the Development of Pharmaceuticals for Managing Ischemic Brain Injury. CNS Neuroscience and Therapeutics, 2011, 17, 250-255.	3.9	14
39	Cyclic glycine-proline administration normalizes high-fat diet-induced synaptophysin expression in obese rats. Neuropeptides, 2019, 76, 101935.	2.2	9
40	Cyclic glycine-proline normalizes systolic blood pressure in high-fat diet-induced obese male rats. Nutrition, Metabolism and Cardiovascular Diseases, 2020, 30, 339-346.	2.6	9
41	Synthesis and Self-Assembly of a Peptide - Amphiphile as a Drug Delivery Vehicle. Australian Journal of Chemistry, 2013, 66, 23.	0.9	7
42	Modeling the effect of insulin-like growth factor-1 on human cell growth. Mathematical Biosciences, 2015, 259, 43-54.	1.9	5
43	Cyclicâ€glycineâ€proline accelerates mammary involution by promoting apoptosis and inhibiting IGFâ€1 function. Journal of Cellular Physiology, 2017, 232, 3369-3383.	4.1	5
44	Changes of plasma cGP/IGF†molar ratio with age is associated with cognitive status of Parkinson disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12025.	2.4	5
45	The autocrine regulation of insulin-like growth factor-1 in human brain of Alzheimer's disease. Psychoneuroendocrinology, 2021, 127, 105191.	2.7	5
46	Window of Opportunity for Neuroprotection with an Antioxidant, <scp>A</scp> llene <scp>O</scp> xide <scp>S</scp> ynthase, after Hypoxia–Ischemia in Adult Male Rats. CNS Neuroscience and Therapeutics, 2012, 18, 887-894.	3.9	4
47	Administration of cyclic glycine-proline during infancy improves adult spatial memory, astrocyte plasticity, vascularization and GluR-1 expression in rats. Nutritional Neuroscience, 2021, , 1-11.	3.1	1
48	NEURONAL RESCUE AFTER HYPOXIC ISCHEMIC INJURY (HI) USING INSULIN-LIKE GROWTH FACTOR-1. Pediatric Research, 1994, 35, 263-263.	2.3	0
49	The Potential Use of Insulin-like Growth Factor I (IGF-I) as a Neuronal Rescue Therapy. Clinical Pediatric Endocrinology, 1994, 3, 238-238.	0.8	0
50	Connexin43 Expression and Associated Chronic Inflammation Presages the Development of Cerebral Radiation Necrosis. Journal of Neuropathology and Experimental Neurology, 2020, 79, 791-799.	1.7	0